Computer programming in mathematics education

Marin Marinov! and Lasko Laskov?

L 2New Bulgarian University, Informatics Department

Abstract

In the last few decades, the contemporary informational technologies in-
troduced new challenges in front of the education in mathematics. These
challenges concern an essential part of the methodology of education itself.
In this paper we present four different directions in which the important
knowledge of computer programming may extend the capabilities of the ed-
ucational process towards achieving the desired goals.

Keywords: mathematics education, computer programming, Wolfram lan-
guage, Analytical Geometry, continuity, local extrema.

Introduction

The incorporation of the contemporary informational technologies can turn
from a threat into a tool for overcoming the crisis in the education in math-
ematics. This is the conclusion from the experience of New Bulgarian Uni-
versity in the education in some mathematical disciplines using a computer.
The adoption of the contemporary informational technologies results in a
new structure of education, which we call practical oriented education. The
practical oriented education in mathematics achieves the educational goals
using new forms, methods and means of teaching [Marinov, 2014].
The goal of the education is students to achieve:

e fundamental knowledge and skills, and ability to operate with them;
e skill to solve standard and nonstandard problems;
e skill to augment their knowledge by themselves.

A new educational type is developed in the form of computer labs, and
the roles of lectures and practical classes is changed [Marinov, 2014]. The
three educational forms are implemented with a system of related problems
in agreement with the presented approach for education based on a system
of problems in [Asenova and Marinov, 2019]. This organization of the educa-
tion places in the center of the process the learner himself, and the scientific

software (in our experience this is the symbolic computation system Mathe-
matica) plays the role of a tool for education and communication [Marinov,
2014].

We will note that the choice of the symbolic computation system Math-
ematica is due to its good didactic capabilities:

e for symbolic calculations in all mathematical disciplines;
e for visualization;

e for teaching proofs;

e for concepts introduction.

Besides that, the system is successfully used in scientific research and
practical problems solution. Of course, there are other systems with the
above qualities, and our choice of software system is more or less arbitrary,
and is not a result of comparison between the existing systems. Also, in our
work just a small part of the capabilities of the system Mathematica are used.
We are convinced that the above methodology for teaching mathematics
can be implemented without principal problems with the aid of the others
software systems as well.

The adoption of the scientific software as a tool for education funda-
mentally changes the system of problems that are used in the educational
process. A major part of the traditionally used problems can be solved di-
rectly in one step with one of the huge variety of build-in functions. More
over, because of the variety of the build-in functions, many of the problems
cannot play their previous part in the overall educational process. Such
problems are:

e to draw the graph of a function, that is given in explicit, implicit or
parametric form;

to find the maximum (minimum) of a function on a compact domain;

to calculate the derivative of a function;

to calculate the integral of a function;

to find the inverse or the pseudoinverse of a matrix, etc.

In this way the systems of problems, that has been approved by the good
practices, are destroyed. Moreover, the insufficiency of problems for appli-
cation of the studied material is significant. This insufficiency is overcame
using the new capabilities of the scientific software. The good didactic ca-
pabilities of the system Mathematica allow to involve more natural, and at
the same time more convincing problems, that help the introduction of the
new knowledge. The path to the problems that are rich in content is getting

much shorter [Marinov, 2008]. The studying of proofs is getting possible
(see [Marinov and Asenova, 2013]), which is a topic that is often neglected
in university courses in mathematics in non-mathematical programs.

The integrated environment of the symbolic computation system Math-
ematica is comfortable for description of the relations between statements
and concepts in different fields. In this way an opportunity is given for
introduction of new problems that demonstrate the relations between the
different studied subjects, and between different mathematical subjects as
well. We will point out the relation to geometry, as an important one.

The adoption of the scientific software as a tool for education gives a
good prerequisite to restore the relations of studying of mathematics with
the external subjects. Traditionally, the relations to physics, economics, and
biology are examined. In studying of mathematics by students in informatics
programs, of course the relation to informatics is brought to the foreground.
In this sense, the computer programming can be examined in two ways. The
first one is programming as a field in which the knowledge of mathematics
has its applications. With this paper we would like to draw attention to the
other way — in which computer programming gives opportunity to include
new types of problems to each of the systems of problems used in the edu-
cation in mathematics. Something more, the well-structured such systems
of problems give opportunity the skills and creativity that are developed by
programming, to be included in education in mathematics. This makes the
introduction of concepts much more effective [Asenova and Marinov, 2018],
and the mathematical knowledge itself much more durable.

Computer programming in Mathematica

The symbolic computation system Mathematica introduces a comfortable
integrated environment for programming in which easily can be applied the
knowledge in different fields of mathematics. The programming language of
Mathematica is called Wolfram Language. A computer program written in
Wolfram Language is a sequence of commands, executed in interactive mode.
Basic elements of the language include: numbers (integers, rational, real,
complex), variables, main constants, arithmetical operators, comparison,
logical operators, function identifiers, brackets. There is no symbol for end
of expression, unless we want to execute the expression without printing —
in this case semicolon is used.

Wolfram Language supports the following programming paradigm ele-
ments:

e symbolic computation (global and local transformation rules, usage of
patterns in both global and local transformation rules);

e procedural programming (conditional statements, repeatedly executable

statements, compound expressions, local variables);

e functional programming (definition of named, pure and anonymous
functions).

The language itself has a comfortable syntax and allows complex pro-
grams to be written with relatively short program code (see [Wolfram Re-
search, 2019]).

Computer programming in mathematical education

Even thought nearly all mathematical disciplines that are studied in the uni-
versity can be pointed out, we will give four examples from the introductory
courses in mathematics.

Graphics and animations

Graphics and animations are present in many of the problems that are used
in the educational process. They allow the intuition in the understanding
of abstract concepts and proofs. Their implementation in system Mathe-
matica is made easier by the various build-in functions. What remains to
be implemented is the connection of the appropriate build-in functions with
the mathematical knowledge into a short program. That is why there are
two ways in which graphics and animations are effectively used. The first
approach is when the lecturer gives the appropriate graphs and animations
that illustrate the introduced content or during a numerical experiment that
shows an idea, later developed in to a proof, etc. The second approach is
when the students themselves implement the graphs by connecting the as-
similated knowledge with their ability to write a short program. These type
of problems are usually aimed in the development of their creativity.

Example 1. (Continuity at a point.) We define the function

sin(%z)+% r<l1
fa) = T =1 1)
2244z —1 r>1

(i) Using an animation in which the points = and xy can be moved on
the plot of the function y = f(z) (see Figure 1), we can attract the
attention of the students to the specific features, that comprise the
term continuity. For example, we select a point xp, and we show the
fact that in some cases f(z) can be arbitrary close to f(xp), and in
other cases — this is impossible. Something more, in the cases it is
possible, the closeness is guaranteed by the closeness of x to zg. In
this way the conclusion is reached that for the examined function, in

zo # 1, the following property is true: f(x) can be arbitrary close to
f(zo), as long as x is arbitrary close to xy.

Av

f(xo) T
f(x)

Y/
A

ke d

Figure 1: One frame of the animation generated by the program code 1

(ii) The animation helps to set aside the particular function. For this

purpose, it is enough to analyze a number of different functions using
the same program. Naturally we reach the definition of Koshi for
continuity of a function in a point. A small complement to the initial
animation allows us to illustrate it as well.

Hla_, b_, x_] := (Signlx - al] + 1) / 2 * (Sign[b - x] + 1) / 2;
flx_] := (Sinl(m * x) / 2] + 1/ 2) = H[-4, 1, x] + (-x"2 + 4 * x - 1) * H[L, 5, x];
a = -3; b = 3;
X[x_] = {x, 0}; clx_] = {x, f[x]};
dlx_, x0_] := If[x < x0, {0, Limit[f[t], t->x, Assumptions->t < x1},
If[x > x0, {0, Limit[f[t], t->x, Assumptions-> t > x]},{0, f[x0]}]]
Alx_, x0_] := If[x < x0, {x, Limit[f[t], t->x, Assumptions->t < x1},
If[x > x0, {x, Limit[f[t], t->x, Assumptions->t > x1}, {x0, £[x01}1]1;
plx_, x0_] := Plot[f[z], {z, a, b},
PlotRange->{-0.8, 3.5}, AspectRatio->Automatic, Axes->False,
Epilog->{

PointSize [0.015], Point[X[x0]], Point[X[x]], Point[d[x0, x0]1,
Point [c[1]], Point[X[1]], Point[c[x0]], Point[d[x,x0]],
{EdgeForm[Black], White, Disk[A[x, x0], Offset[2]]},
Text ["x", X[x] + {0.1, -0.08}],
Text ["x0", X[x0] - {0, 0.16}], Text["1", X[1] - {0, 0.16}],
Text ["f(x)", dlx, x0] + Sign[x] * {-
0.27, 0}], Text["f(x0)", d[x0, x0] + Sign[x0] * {-0.27,0}],
Text["x", X[b] - {0.1, -0.1}], Text["y", {0.15, 3.4}],
Text["rf", {f[2.5] - 0.1, £[2.5] + 0.06}]1,
Arrow [{A[x, x0], d[x, x01}], Arrow[{X[x], Alx, x013}]1,
Arrow [{A[x0, x0], d[x0, x0]}], Arrow([{X[x0], A[x0, x01}1,
Arrow[{{0, -1.5}, {0, 3.48}}], Arrow([{{a, 0}, {b, 0}}1}1;
Animate [p[x, x0], {x, a, b}, {x0, b, a}, AnimationRunning->False]

Listing 1: Program that generates the animation to demonstrate the conti-
nuity at a point of a given function

(iii) The full program code of the animation is given in Listing 1.

(1) Lines 1 and 2 define the function f(z).

(2) Lines from 3 to 8 define the coordinates of the points of the ani-
mation.

(3) Lines from 9 to 23 generate the graph of the function and the
locations of the labels in the animation.

(4) On the line 24 the animation itself is assembled.

Two similar animations together with 10 graphics are used in [Asenova
and Marinov, 2018] to present the separate stages of learning of mathemat-
ical concepts.

Teaching mathematical proofs

Let us clarify preliminary, that here we are not discussing purely formal
proofs, that are subjects of the mathematical logic, and are represented by
a sequence of symbols. The object of our research are so called informal
proofs, which are taught in the courses of mathematics. These proofs create
relations between the studied concepts. In this way, facts are transformed
from being elements of a given set into a vital structure, that is capable to
analyze and solve new problems. The knowledge and understanding of the
main types of proofs, as well as the development of the ability for creating
of individual proofs, are a basic stage in the education in mathematics.

In [Marinov and Asenova, 2013] is presented how all main types of proofs
that are studied in the university can be taught using a computer. The
examples that are shown in this work depict also the important role that
takes the computer programming as an instrument for working environment
organization.

We will illustrate the above with an example that uses the exhaustive
search method.

Example 2. Find local extrema of the implicit function z = f(z,y), that
is defined by the equation:

at =2+ +22) +yt+ 2t =0 (2)

Solution: Since the function u(z,y,z) = z* — 2 (x2 + 9%+ z2) +yt+ 24
has continuous second order partial derivatives, then the implicit function
theorem gives the sufficient condition for the local existence of the implicit
function z = f(x,y). Simultaneously it is proved that the implicit function
has continuous second order partial derivatives. As a corollary of the implicit
function theorem the relation between the partial derivatives of the functions
u(z,y,z) and f(x,y) is found. This allows to prove a procedure for finding
local extrema of the implicit function z = f(x,y), that is defined by the
equation u(x,y, z) = 0.

(1) Necessary condition. Local extrema are stationary points. And in the
examined case all stationary points can be found as solutions of the

System

8u(x,y,z) — 0

3u(2?y,2) -0 (3)
oy -

u(z,y,2) =0

It will turn out that in the examined case that system has 19 solutions.

(2) We select those stationary points, for which the implicit function theo-
rem can be applied. These are the points A(xg, yo, 20) for which

Ou(zo, Yo, 20)

p10:20) 2 g, (4)

It will turn out that in the examined case there are 18 such points.

(3) Verification of the sufficient conditions for local extreme in the station-
ary points for which (4) is fulfilled.

(3.1) In the examined stationary point A(zo, yo, 20), we calculate the
matrix

oo z0) = (142) =

1 9*u(z0,y0,20) 92u(0,y0,20)
_ (Ox? 0zdy > (5)

ou(zoy0,20) | 0%u(wow0,20) 9%u(xo,y0,20)
02 Oyox 0y?

(3.2) We define functions
d _ _ fir o fiz
1(20, Y0, 20) = f1 and da(wo, Yo, 20) = det For Fan)
(6)
(3.3) Conclusion:

(a) If di(zo,y0,20) > 0 and da(xo,yo,20) > 0, then the function
z = f(x,y) has a local minimum at the point (z¢, y9), and it
is equal to zp.

(b) If di(x0,y0,20) < 0 and da(zo, Yo, 20) > 0, then the function
z = f(x,y) has a local maximum at the point (xg, yo), and it
is equal to zg.

(c) If da(xo,y0,20) < O, then the function z = f(x,y) does not
have a local extreme at the point (xg, yo). In this case we will
call the point a saddle point.

(d) If da(zo, Yo, 20) = 0 is necessary to perform a special investi-
gation, because it is both possible function to have or not to
have a local extreme.

The solution of the Example 2 with the above procedure requires a
sufficient amount of routine calculations, and the application of computer
programming skills make the solution easer and more complete. By using
Mathematica’s built-in functions for symbolic calculation of private deriva-
tives, determinants, and system solving, the corresponding calculations can
be performed by a computer. This allows the whole procedure for local
extrema calculation to be implemented in a single program (see Listing 2).

v=oA} w=1A} n={}; to = {}; t1 = {};
ulx_, y_, 2.1 = x74 + y74 + z74 - 2 % (x72 + y°2 + z272);
uzlx_, y_, z_.1 = Dlulx, y, zl, z];
mlx_, y_, z_1 = (-D[ulx, y, z], {{x, y}, 2}]1//Expand) / uzlx, y, z];
diflx_, y_, z_] = m[x, y, z][[1, 1]1]1//Simplify;
d2[x_, y_, z_] = Detl[mlx, y, z]1//Simplify;
t = Solve[D[ulx, y, z], x] == 0 &&
D[ulx, y, z], y]l == 0 && ulx, y, z] == 0,
{x, y, 2z}, Reals];
For[i=1, i <= Length[t], i++,
p = uzlx, y, z]1 /. t[[il];
If[p == 0,
t0 = Join[t0, {t[[il]}],
q = {dtlx, y, =zl /. t[[il], d2[x, y, z] /. t[[ill};
If[q[[2]1] > O,
If[ql[[1]1]1 > O,
v = Joinl[v, {t[[ill1}],
If[q[[1]1] < 0, w = Join[w, {t[[i]]1}]1]

1,
If[ql[2]1] < O,
n = Join[n,{t[[i1]1}], t1 = Join([t1,{t[[i]113}]]

Listing 2: Program that discovers local extrema of a given implicit function

In line 1 of the program in Listing 2 we define the lists in which the
result will be stored, where:

e v is the list of points in which the implicit function has local minima;

e w is the list of points in which the implicit function has local maxima;

n is the list of stationary points in which the implicit function has
extrema;

e {gis the list of stationary points for which the implicit function theorem
cannot be applied ((4) is not fulfilled);

e ty is the list of stationary points for which additional investigation is
required.

Inlines 2, 3, 4, 5, and 6 we introduce respectively: the examined function;
its partial derivative with respect to the variable z; the matrix m (see (5));
functions d; and dy (see (6)). In lines from 7 to 9 we calculate the list of
the stationary points ¢ by solving the system (3).

In the loop in lines from 10 to 24 we distribute the points from ¢ into the
lists v, w, n, tg, and t1. It turns out that for the concrete problem v and w
contain five points each; n contains eight points; tg contains a single point,
and ¢ is the empty set. More precisely:

o v=1{(-1,-1,—V/V3+1); (-1,1,—vV3 +1); (0,0,v2);
(17_17_ \/g"i'l); (1717_ \/§+1)}5

o w— {(_1 1, \/7) (—1,1,\/7) (0,0, —v2);
) ()

n= {(10, ~VV2+1)5 (<1,0,VVZ+1); (0,-1,-VVZ+1);
(0.1 VVET 1) (0.1, VVETT): (01 VVET 1)
(1707— 37 1) (L0VVET L))

e to=1{(0, 0, 0)}.

We will not that the presented solution of Example 2 turns a problem,
that usually is omitted in the standard courses in Calculus, in a problem
that helps to consolidate the acquired knowledge. Besides that, in this way
the knowledge from another field (computer programming) is used to focus
the attention on the analysis of the solution. More precisely:

e Geometrical interpretation of the solution: plot of the surface S : z* —
2 (mz +2+ 22) + y* + z* = 0 and the implicit functions z = f(z, y);
plot of the points from the lists v, w,n, and ty (see Figure 2).

e Proof that the program solves the problem with an accent on the used
theorems, where they are applied, and this application is possible.

Our experience shows that the computer programming in the integrated
environment of the system for symbolic computation Mathematica turns
out to be a very effective tool: in numerical experiments with the goal of
formation of hypothesis for a proof; in stating of some counter-examples; in
illustration of decisive parts of the proof, etc.

Relation of mathematics with the real world and other sci-
ences

Often solutions of applied problems presume a significant number of manip-
ulations of the same type that lead to the final result. This places technical
problems in the center of attention, and requires significant time for the solu-
tion. On the other hand, the giving up from the complete solution makes the
relation to the real world declarative and unconvincing. The application of

Figure 2: The implicit function z = f(z, y) and the points of v, w and n

computer programming in such cases can be very useful. Examples for such
problems can be many of the problems given in the standard Operations
Research courses.

We will illustrate the above with a sub-problem of the 1D cutting-stock
problem. The solution of the general problem leads us to a problem of the
following type:

How many ways can be cut out of a pipe with a length of a in pieces of
lengths equal to any of the numbers q1, qo, ..., Gn-

We will formulate the problem using only mathematical terms:

Example 3. Division of a number by a vector. Given a positive number
a and a vector ¢ = (¢1, q2, ..., ¢n) With positive components, find all vectors
k = (ki1, k2, ..., ky), whose components are non-negative whole numbers,
and satisfy:

0<a-—(kiq1 +kago + -+ kngn) <min{qi, g2, ..., qn}-

Solution: In the solution of Example 3, we will call the number a a dividend,
and the vector ¢ we will call a divisor. The vector k we will call a quotient,
and the number r = a — (k1q1 + k2ga + - - - + kngn) — a reminder.

Without lost of generality, we will assume that a, and the components
of the vector ¢ are natural numbers, and also that ¢; > g2 > -+ > qp.

For the problem formulated in this way, we can look for a solution that
is motivated by the whole number division theorem. Because of the signifi-
cant number of calculations of the same type, it is comfortable to solve the

10

problem with an appropriate computer program. We will solve Example 3
by defining the function F'[a, ¢], which has arguments the dividend a, and
the divisor ¢, and calculates the list v of all vectors k, which are quotients
of the division of a by gq.

By a sequence of numerical experiments students find a natural algo-
rithm, that solves inductively the problem. For its implementation, first we
define two helper functions. The first one is given in Listing 3 below:

fdla_, x_] := Module[{A = a, b=x, v, i},
For[v = {A}; 1 = 0,b <= A, i++, A = A - b; v = Joinl[v, {A}]];
v]

Listing 3: Calculates the vector v

For given two numbers a and x, Listing 3 calculates the vector v with
i-th component equal to a — (i — 1)z for a — (i — 1)z > 0.
The second function is given in Listing 4:

frla_, x_] := Length[fd[a, x]] - 1 I

Listing 4: Calculates the whole part of the division of a by =

For given two numbers a and x, Listing 4 calculates the whole part of
the division of a by z.

With these two functions we define the function £[2, a, q] that solves
Example 3 in the special case in which ¢ has two components (Listing 5).

f[2, a_, q_] := Modulel[{A bl = ql[[1]1], b2 = ql[2]1], v, w, i},
w = fd[A, Dbl];
For[v {}; i = 1, i <= Length([w], i++,

v Join[v, {{i - 1, frlwl[[il]l, Db2]1}}]
1; vl

Listing 5: Solves the example in the special case when ¢ has two components

If we denote with f[n, a, q] the solution in the case in which the vector
¢ has n components, then the recurrent connection between f[n, a, q] and
fln - 1, a, q] allows us to define the required function F[a, ql:

fln_, a_, q_] := Module[{A = a, b1l = ql[[1]],
ql = Droplq, 11, v, w, m, ml, m2, i},
w = fd[A, Dbl];
For [v={}; i=0, i<= fr[A, bl], i++,
m = f[n-1, wlli + 111, q1l;

ml = Array[i&, {Dimensions[m][[1]], 1}];
m2 = Join[mil, m, 2];
v = Join[v, m2]
1;
v
1;
Fla_, q_] := fl[Length[ql, a, ql

Listing 6: Recurent expression that defines the function F[a, q]

11

Defined in this way, the function F[a, q] finds all vectors k, that are
quotient of the division of a by ¢ stores them as separate rows of the matrix
v. Hence, the vector of the division remainders can be calculated using the
function:

rla_, q_] := a - Fla, ql.q
Listing 7: Calculates the vector of the division remainders

In this case we have used the fact that if a is a number, and u =
(u1, ug,..., uy) is a vector, then Mathematica solves a — u as a vector
(a—uy1, a—wug,..., a—uy). For a given dividend, and divisor ¢, the function
rla, ql calculates the vector r = r[a, q] with components r; = a - vj,.q.
The number r; is the remainder of the of the division of a by ¢ with the
quotient vj,, which is stored as the j-th element of the list v.

Finally, we will note that the number j of the vectors k, which are
quotients of the division of the number a by the vector ¢, can turn out to be
rather big. For example, for a = 13 and ¢ = (7, 6, 4, 3) it is j = 10. But
for a = 84, and ¢ = (44, 32, 27, 15, 10, 8, 7), the number is j = 303.

Once Example 3 is solved, naturally the following problems arise:

1. By an appropriate modification of the solution of the example, define
a function G[a, ql, that finds all vectors k, for which 0 < a — (k1¢q1 +
k2‘]2 +--+ kn‘]n)

2. Propose a more effective algorithm for the definition of the function
Fla, ql.

Development of students’ ability for mathematical knowledge
application

The significance of this stage of education is getting more important because
of the fact that in the recent practice the time scheduled for this type of
problems was strongly limited. Problems that develop the ability of the stu-
dents to apply mathematical knowledge can be such practical problems that
require practitioner to discover the method for solving by himself. Another
example are problems that require knowledge from different disciplines, or
knowledge from different parts of the studied discipline, etc. Following this
direction, computer programming allows the formulation of new types of
problems. With these new problems, the attention of the students is at-
tracted to the relations between the theorems that were already proved, and
parts of proofs of different theorems. A new approach is developed towards
the comprehension of the proofs in the general context of the education,
and towards the development of the ability of the students for independent
knowledge upgrade.

The following stages can be pointed out for solving of this new type of
problems:

12

e Selection of the group of theorems, whose interrelations we will study.
e Definition of the interrelation that can be described in a formal way.

e Development of an algorithm for a computer program, that describes
the interrelation.

e Proof of the result of the program execution.
e Program implementation.

e Program verification.

e Application of the implemented program.

As examples can be pointed out many analytical geometry statements
and theorems that concern: equation of a line in the FKuclidean plane and
the Euclidean space; determining the mutual position of two straight lines
in space; classification of second degree lines and surfaces, etc. We will
illustrate the above with a short example.

Example 4. Write a program that determines the mutual position of
two arbitrary planes in space, if the planes are defined with their general
equations.

Solution: For two planes in space, exactly one of the cases is true:
1. The two planes intersect.
2. The two planes are parallel.
3. The two planes coincide.

By condition, the two planes are defined by their general equations:
ar +by+cz+d=0 and ex + fy+gz+h=0,

where a, b, ¢, d, e, f, g, h are predefined constants, for which |a|+|b|+|c| # 0
and |e|+|f|+|g| # 0. We will define a function F[«, 1, that will determine
which of the three possible cases is valid for planes with general equations
a=0and S = 0.

Following the general approach, first we determine the group of theorems
that give the full description of all possible cases of mutual position of two
planes in the space. After that, we determine those concepts which allow the
uniform representation of the conditions of the theorems, without violation
of the truthfulness of their proofs. This allows us to discover a logical relation
that leads to the development of the algorithm, and hence, to the solution
of the problem. For the specific problem, the algorithm is:

13

1. Using a, define the vector v = (a, b, ¢, d).

2. Using S, define the vector w = (e, f, g, h).

3. Calculate the rang of the matrix m = (

o

b

f
bc)
fa)

5. If the rang of the matrix m; is equal to 2, then the planes intersect.

4. Calculate the rang of the matrix m = (

o

6. If the rang of the matrix m; is different from 2, and the rang of the
matrix m is equal to 2, then the planes are parallel.

7. If both rangs of m; and m are different from 2, then the planes coincide.

The proof of the algorithm actually repeats the proof of the correspond-
ing theorems. A possible implementation of the algorithm in Wolfram Lan-
guage is given in Listing 8.

Fla_, B_.]1 :=
Module [{v ,w ,m,ml,r,rl,p},
v = {Coefficient[a, x], Coefficient[a, y],
Coefficient[a, 2], a /. {x->0, y->0, z->0}};
= {Coefficient[S, x], Coefficient[3, yI,
Coefficient [, z], B /. {x->0, y->0, z-> 0}};

=
I

m = {v, w};
r = MatrixRank[m];
ml = Take[m, All, 3];
rl = MatrixRank[mi1];
p = If[

rli == , "The planes intersect",

If[r == 2,

"The planes are parallel", "The planes coincide"

Listing 8: Determines the mutual position of two arbitrary planes in space

Remark: The program in Listing 8 can be modified not to use the build-
in function MatrixRank[...], but to use only algebraic expressions of the
constants a, b, c, d, e, f, g, and h. In this way it is not going to be necessary
to define the matrices m and m1, and to apply the function Take[...].

Conclusion

The purposeful abruption of the relation of mathematics with the real world,
that started in the middle of 20th century, substitutes the essence of math-
ematics with a training of formal manipulations [Arnold, 1990]. This leads

14

to a wrong concept of mathematics, and eventually leads to its destruc-
tion. The contemporary informational technologies, applied in the solution
of mathematical problems, cause new treads, that result in acceleration of
these negative trends.

On the other hand, the scientific software, when adopted as a tool for
education, can help to overcome the wrong concept of mathematics, and
to avoid the new threats, by putting back into the center of education the
meaningful aspect of mathematics. From this point of view, the initial
programming skills turn out to be very useful in:

(i) application of geometrical interpretations in education;
(ii) understanding of meaningful mathematical proofs;
(iii) education in mathematics that is focused on the practice.

The inclusion of computer programming in the methods of education in
mathematics:

(i) enhances the students’ ability for application of mathematical knowl-
edge;

(ii) increases the interest of students for the particular problem, and in-
creases their activity;

(iii) leads to the development of new category of problems;
(iv) develops students’ algorithmic thinking;

(v) consolidate students’ programming skills.

References

Arnold, V. (1990). The antiscientifical revolution and mathematics, Herald
of the Russian Academy of Sciences 69: 553-558.

Asenova, P. and Marinov, M. (2018). Teaching mathematics with computer
system, Mathematics and education in mathematics. UBM 47: 213-220.

Asenova, P. and Marinov, M. (2019). System of tasks in mathematics edu-
cation, Mathematics and Informatics 62: 53-71.

Marinov, M. (2008). Matriz calculation with Mathematica, Sofia: Planeta 3.

Marinov, M. (2014). Mathematical education with system for symbolic cal-
culation, Mathematics and education in mathematics. UBM 44: 137-148.

15

Marinov, M. and Asenova, P. (2013). Mathematical proofs at university
level., Computer Science and Education in Computer Science, Fulda, Ger-
many 47: 72-81.

Wolfram Research (2019). Wolfram: Computation meets knowledge,
http://www.wolfram.com.

Prof. Marin Marinov, Ph.D.,

New Bulgarian University,

Informatics Department,

21 Montevideo Str., 1618 Sofia, Bulgaria,
mlmarinvo@nbu.bg

Assoc. Prof. Lasko Laskov, Ph.D.,
New Bulgarian University,

Informatics Department,

21 Montevideo Str., 1618 Sofia, Bulgaria,
llaskov@nbu.bg

16

