
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2018

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2018

Proceedings of the Forty-seventh Spring Conference

of the Union of Bulgarian Mathematicians

Borovets, April 2–6, 2018

THE TRAVELLING SALESMAN PROBLEM WITH THE

SYMBOLIC COMPUTATION SYSTEM MATHEMATICA*

Marin Marinov, Lasko Laskov

This paper examines the classical problem of the travelling salesman. Using the
symbolic computational system Mathematica we presenta heuristic method, an ex-
haustive search algorithm, and a branch and bound method. Using numerical ex-
periments we illustrate different capabilities of the program implementations of the
distinct methods.

1. Introduction. In this paper the following classical problem is examined: A trav-
elling salesman must visit n cities. The travel from an arbitrary selected city i to a city
j has a price f(i, j), where also f(i, j) 6= f(j, i) is possible. The route of the travelling
salesman starts from city 1 and ends in city 1, where each city must be visited exactly
once. The total price of the route is the sum of all prices f(i, j) of the individual roads
that comprise it. The objective is to find the minimal price of all routes, and all routes
with the minimal price.

Since the number of cities is finite, a minimum price route with the above requirements
exists, and the problem is to find it among the number of possible routes.

The travelling salesman problem has a number of applications (see for example [6]).
On the oter hand, from a computational point of view, it is an NP-hard problem [6], and
the known algorithms that solve it have an exponential complexity. Something more,
even the problem of finding an ε sub-solution remains NP-hard.

The travelling salesman problem is a good test for many newly discovered methods.
Furthermore, the development of many methods have been inspired by the attempts to
find an efficient solution to this problem. The survey paper [6], and the monograph [2]
give an extensive view of the scientific research on the topic up to 1989. The problem
of the travelling salesman continues to be a subject of many scientific researches and
university courses (see [1], [3], [7], [5]).

The goal of our paper is to show how symbolic computation system provide a way
for clear and comprehensive implementation of the methods that solve the travelling
salesman problem. The following type of methods are presented: heuristic methods,
exhaustive methods, and a branch and bound method.

*2010 Mathematics Subject Classification: ???.

Key words: travelling salesman problem, branch and bound method, symbolic computation sys-

tems.

1



2. Notations. Let A be an arbitrary matrix. We will use the following notations:
• A(i, j) is the element of the matrix A located on the i-th row and jth column;
• A(i, ·) is the ith row of A;
• A(·, j) is the jth column of A.
We denote by v0 the set {2, 3, . . . , n}. We record all permutations of v0 in the matrix

P , where its i-th row:

(1) P (i, ·) =
{

i1, i2, , i(n−1)

}

is the i-th permutation of v0. Besides that, for each i ∈ {1, 2, . . . , (n− 1)!} we define

(2) P (i, ·) =
{

1, i1, i2, . . . , i(n−1), 1
}

.

It is clear that each permutation P (i, ·) defines a single possible route P (i, ·),:

(3) 1 → i1 → i2 → i3 → · · · → i(n−1) → 1

and vice versa. This allows us to regard

(4) W = {P (i, ·) : i ∈ {1, 2, . . . , (n− 1)!}

as the set of all possible routes.
We will call the matrix M the cost matrix in the travelling salesman problem defined

above, if

(5) M(i, j) =

{

f(i, j), if i 6= j

B, if i = j,

where B is a big number.
The cost matrix M defines the function Ff(w), which relates to each route w from

W its price

(6) Ff(w) =

n
∑

i=1

M
(

wi, w(i+1)

)

,

where w = {w1, w2, . . . , w(n+1)}.
Now the travelling salesman problem can be defined in the following way:

Problem 1. The travelling salesman problem. Find:

(7) r0 = min
w∈W

Ff(w)

and give a list v of all routes with price r0.
For clarity we will use the following example in which the cities are 6 and the cost

matrix is

(8) M =

















3000 26 42 15 29 25
7 3000 16 1 30 25
20 13 3000 35 5 1
21 16 25 3000 18 18
12 46 27 48 3000 5
23 5 5 9 5 3000

















The big number B = 3000 is placed on the main diagonal of M .
3. Heuristic methods. These are rules without a rigorous proof and are based on

likely comprehensions that partially solve the examined task. Usually they do not lead

2



to an exact solution, but they are fast and in many cases are a good starting point of
the research.

A typical example are the so-called Greedy algorithms. In the case of the examined
problem, the idea can be formulated in the following way: Being in the city i, we choose

among the cities not yet visited the city j, for which the price f(i, j) is minimal.

We implement this idea, starting from the city 1:

1 B0 = 3000; M[[All , 1]] = M[[All , 1]] + B0;

2 For [i=1, i < d0[[1]] , i++, j = 1;

3 While[M[[z[i], j]] > Min[M[[z[i]]]], j++];

4 z[i + 1] = j;

5 M[[All , z[i + 1]]] = M[[All , z[i + 1]]] + B0;

6 v = Join[v, {z[i + 1]}]];

7 v = Join[v, {1}]

Listing 1: On each step, at city i, the greedy algorithm selects the city j with minimal
price f(i, j)

For the examined case of the matrix M we get the following route:

(9) 1 → 4 → 2 → 3 → 6 → 5 → 1,

that has price 65. After finding the exact solution we will see that this result is not bad.
Something more, we can try to improve the described algorithm by initiating the tour
from a special starting point. For example:

1. Find the minimum element M(i0, j0) of the cost matrix M .
2. Select the transition i0 → j0.
3. Complement the built section of the route with transition of type k → i0, or

transition of type j0 → p depending on where the minimum is reached.
Let us examine Problem 1 in the case of 4 cities, and a cost matrix

(10) M =









100 1 4 4
4 100 2 4
4 4 100 3
x 5 5 100









,

where x ≫ 5. It turns out that the solution of the Greedy algorithm has a price x + 6,
while the minimal price is 14. This example shows that the difference between the result
of the Greedy algorithm and the exact solution can be an arbitrarily big number.

Heuristic methods are built, for which the deviation from the optimal solution is not
bigger than the optimal solution itself, provided that for the elements of the matrix cost
matrix M the following conditions are fulfilled:
(i) Symmetry

(11) f(i, j) = f(j, i), ∀{i, j} ⊆ {1, 2, . . . , n}.

(ii) Triangle inequality

(12) f(i, j) ≤ f(i, k) + f(k, j), ∀{i, j, k} ⊆ {1, 2, . . . , n}.

We will mention two such methods:

Remark 1. Let the conditions (11) and (12) are fulfilled. By modification of Listing
1, we implement the following algorithm:

3



1. w = {1} and V = {1, 2, . . . , n}.
2. If V \w = ∅, on the last position of w put 1; end.
3. if V \w 6= ∅, find i0 ∈ w and j0 ∈ V \w, for which f(i0, j0) ≤ f(i, j), ∀i ∈ w and

∀j ∈ V \w.
4. Include j0 in w, and place it after i0.
5. Go to 2.
Remark 2. Another algorithm based on the above conditions can be described by

definition of the Problem 1 in the terms of the graph theory. Each city j is a vertex
j in the graph, while each path from city i to city j is an edge {i, j} with cost f(i, j).
By condition for each i ∈ {1, 2, . . . , n} and each j ∈ {1, 2, . . . , n} an edge {i, j} with
cost f(i, j) is defined. We assume that the conditions (11) and (12) are fulfilled. Hence,
a complete, undirected graph G is defined. The permissible routes of the travelling
salesman are the Hamiltonian cycles of the so defined graph G. Then the Problem 1 is
brought to finding the Hamiltonian cycle with minimal length r0. The algorithm can be
described in the following way:

1. Given a graph G, build the function F (G) that finds its minimum spanning tree T .
2. By doubling of each edge of T get a graph TT , whose vertices have even powers.
3. Given a graph with even powers of its vertices G, build a function E(G), that finds

an Oiler cycle E(G).
4. Separate a Hamiltonian cycle, that is contained in E(G).
The algorithms in Remark 1 and Remark 2 have complexity O(n2). Besides that, if

we denote w0 a route built by means of these two algorithms, the following inequality
holds: r0 ≤ Ff(w0) ≤ 2r0.

4. Exhaustive search methods. The first obvious approach to solve Problem 1 is
by an exhaustive search of all possible routes. This method has a simple structure:

1. Form a list of all possible routes.
2. Calculate the price of each route.
3. Select a list of all optimal routes (routes that have minimal price).
We will illustrate this method by implementing the algorithm in the Listing 2.
In the implementation of this algorithm we will use the build-in function

Permutations[v0] that calculates the matrix P of the permutations (see (1)). The
generation of all permutations is a classical example given in the courses of computer
programming, and can be easily implemented if needed.

1 v0 = {2, 3, 4, 5, 6};

2 P = Permutations[v0];

3 d = Length [v0]!;

4 v = {Join[{1}, P[[1]] , {1}]};

5 r0 = Ff[v[[1]]];

6 For [i = 2,i < d + 1, i++, w = Join [{1}, P[[i]], {1}];

7 If[Ff[w] < r0 ,r0 = Ff[w];

8 v = {w}, If[Ff[w] == r0 , v = Join[v, {w}]]]]

Listing 2: Exhaustive search solution of Problem 1

For the examined case of n = 6 and a cost matrixM we obtain a minimal cost r0 = 62,
and a single optimal route that attains it:

(13) 1 → 4 → 3 → 5 → 6 → 2 → 1.

4



In this solution we have a matrix with (n − 1)! rows and 2(n − 1)! number of tests,
where n is the number of cities. This makes the solution quite lavish. Its good feature
is that it is clear and effective for a small number of cities. On the other hand, for big

values of n this method is useless.
Let us clarify the above with a numerical experiment. For this purpose we define two

matrices. The matrix

(14) M1 = (M1(1, ·), M1(2, ·), M1(3, ·), . . . , M1(15, ·)) ,

where the rows M1(j, ·) are:
M1(1, ·) = (3000, 26, 42, 15, 29, 25, 35, 23, 19, 25, 25, 25, 15, 18, 25),
M1(2, ·) = (7, 3000, 16, 1, 30, 25, 7, 11, 21, 20, 12, 11, 10, 11, 20),
M1(3, ·) = (20, 13, 3000, 35, 5, 1, 26, 6, 16, 15, 15, 8, 13, 22, 15),

M1(4, ·) = (21, 16, 25, 3000, 18, 18, 6, 46, 25, 23, 26, 5, 31, 9, 23),
M1(5, ·) = (12, 46, 27, 48, 3000, 5, 67, 13, 23, 27, 14, 35, 21, 32, 27),
M1(6, ·) = (23, 5, 5, 9, 5, 3000, 32, 42, 32, 19, 22, 23, 19, 18, 19),
M1(7, ·) = (35, 7, 26, 6, 67, 32, 3000, 11, 15, 21, 21, 12, 16, 17, 21),

M1(8, ·) = (5, 23, 65, 10, 16, 67, 57, 3000, 32, 18, 18, 21, 27, 23, 18),
M1(9, ·) = (8, 11, 25, 35, 11, 21, 17, 21, 3000, 24, 22, 20, 23, 35, 24),
M1(10, ·) = (11, 25, 11, 21, 17, 21, 24, 22, 24, 3000, 21, 17, 19, 30, 19),
M1(11, ·) = (25, 9, 12, 15, 26, 14, 22, 21, 18, 21, 3000, 26, 21, 16, 21),
M1(12, ·) = (26, 42, 15, 29, 25, 35, 23, 19, 25, 25, 25, 3000, 31, 13, 16),

M1(13, ·) = (26, 6, 16, 15, 15, 8, 13, 22, 15, 25, 25, 22, 3000, 26, 25),
M1(14, ·) = (6, 46, 25, 23, 26, 5, 31, 9, 23, 20, 12, 32, 32, 3000, 23),
M1(15, ·) = (67, 13, 23, 27, 14, 35, 21, 32, 27, 15, 15, 25, 25, 16, 3000).

The second matrix is M2, which is obtained from the matrix M1 after removing the
first two rows and first two columns.

We solve the problem with matrix M2 using the algorithm in Listing 2 and we receive
that the minimal price is 146 and there is one optimal route:

(15) 1 → 6 → 13 → 8 → 11 → 5 → 2 → 10 → 12 → 9 → 7 → 3 → 4 → 1

The solution was received after more than 4 hours execution on a standard PC configura-
tion.

The attempt to solve the problem with the algorithm in Listing 2 with the matrix
M1 on the same PC configuration, shows that this is not possible.

The attempts to improve the complexity of this algorithm have a partial success, and
more or less place it among the hybrid approaches.

5. Branch and bound method. When solving the travelling salesman problem
with the branch and bound method it is not needed to generate the set of all possible
routes W (see (4)) and to traverse all the routes. This method connects two processes:
branching (separation of non-intersecting subsets of W ), and calculation of an upper
bound R and a lower bound u, for which u ≤ r0 ≤ R.

5.1. General description.

Bounds calculation. It is accepted to call the upper bound current record and to
improve it during the process of problem solving. The calculation of bounds is formed
by the following stages:

5



1. Set R = Ff(w), where w is an arbitrary selected element in W .

2. If during the process of solving a route w0 is found, for which Ff(w0) < R, then
the current record is changed R = Ff(w0).

We will call the route that has a price equal to the current record an approximate

solution.

To calculate the lower bound u we apply the following procedure. The price Ff(w) of
each route w = {w1, w2, . . . , w(n+1)} is the sum of the following elements of the matrix
M (see equation (6):

(16)
{

M (w1, w2) , M (w2, w3) , . . . , M
(

wn, w(n+1)

)}

It follows that each row and each column of M contains a single element of the set (16)
from the definition of the route w. This allows easily to to prove the following rule for
calculation of u:

1. Find the number m
(r)
i , that is the minimum of the elements in the i-th row of M ,

and the number m
(c)
j , that is the minimum of the j-th column of M .

2. Define: (a) the row reduced matrix Mr, whose i-th row is obtained from the i-th of

M by subtracting from each element the number m
(r)
i , and (b) the column reduced

matrix matrix Mc, whose j-th column is obtained from the j-th column of M by

subtracting from each element the number m
(c)
j .

3. Calculate

(17) u1 =

n
∑

i=1

(

m
(r)
i +m′

i

)

,

where m′
i is the minimum element from the i-th column ofMr.

4. Calculate

(18) u2 =

n
∑

j=1

(

m
(c)
j +m′′

j

)

,

where m′′
j is the minimum element from the j-th row ofMc.

5. u = max{u1, u2}.

It is clear that the accuracy with which the approximated solution approximates r0
is qqual to R− u.

We will note that we can obtain from each matrix M the following two matrices M1

and M2:

• M1 is obtained when we reduce Mr by columns;

• M2 is obtained when we reduce Mc by rows.

In future we will call the matrix M1 reduced matrix of M , when u1 ≥ u2. In the case
when u1 < u2, we will call the matrix M2 reduced matrix of M .

For convenience, we will define the function F (M), such as for each matrix M it will
calculate the lower bound u and the reduced matrix M (r).

Branch (separation of non-intersecting subsets of W ). We will implement
the branch together with the search for a better approximation of the solution. More
precisely, using an heuristic algorithm we define a candidate for the approximate solution
w0 and we define a system of non-intersecting subsets A = {Wj} of W , for which the

6



following statement is true: If there exists x ∈ W , for which Ff(x) ≤ R, then

(19) x ∈ {∪Wj} or x = w0.

Algorithm for W branch. We set R = Ff(w), where w is an arbitrarily chosen
element of W . We define the list of chosen solutions v = {w}.

Stage 1.
1.1. Find the reduced matrix M (r) and the lower bound ux.
1.2. Cut test ux > R. The inequality is not fulfilled, so continue with 1.3.
1.3. If M (r)(s, p) = 0 is a zero element of M (r), define its weight tsp as follows:

(20) tsp = min
{

M (r)(s, j) : j 6= p
}

+min
{

M (r)(i, p) : i 6= s
}

1.4. Choose transition i1 → j1 for which ti1j1 = max
{

tij : M (r)(i, j) = 0
}

.

1.5. Divide the set W into two non-intersecting subsets W1 and X1, where W1 contains
all routes of W , that do not contain the tour i1 → j1. Such a branch is called
dichotomy.

1.6. We store in wtx the information for the built connected parts of w0. Initially
wtx = { {i1, j1} }.

1.7. Create the matrix M1 that defines the routes complementing the chosen transition
i1 → j1 to a route from X1:
(a) Put M (r)(j1, i1) to be equal to a boundary big number B.
(b) Remove the i1-th row and j1-th column of M (r).

Stage 2. Repeat the considerations from the Stage 1, after replacing the matrix M

by the matrix M1.

2.1. Find the reduced matrix M
(r)
1 and the correction of the lower bound α. Define

ux := ux+ α.
2.2. Cut down. If ux > R, then each route in X1 will have a price bigger than the

current record, so do not examine it. Continue by examination of W1. If ux ≤ R,
then continue with the next step 2.3.

2.3. Define the weights t(1)sp using (20), in other words

t(1)sp = min
{

M
(r)
1 (s, j) : j 6= p

}

+min
{

M
(r)
1 (i, p) : i 6= s

}

.

2.4. Choose the tour i2 → j2, defined by max
{

t
(1)
ij : M

(r)
1 (i, j) = 0

}

.

2.5. Divide the set X1 into two non-intersecting subsets W2 and X2, where W2 contains
all the routes of X1 that include the transition i2 → j2.

2.6. Store in wtx the information for the built connected parts of w0:
(i) If j2 = i1, then wtx = { {i2, j1} } and M (r)(j1, i2) = B.
(ii) If i2 = j1, then wtx = { {i1, j2} } and M (r)(j2, i1) = B.
(iii) If j2 6= i1 and i2 6= j1, then wtx = { {i1, j1} {i2, j2} } and M (r)(j2, i2) = B.

2.7. Define the matrix M2, by removing the row i2 and the column j2 of the resulting

matrix M
(r)
1 from step 2.4. The matrix M2 defines the routes that complement the

chosen transitions i1 → j1 and i2 → j2 to a route to X2.
Stage 3. We repeat the considerations from the Stage 2, after replacing the matrix

M1 by the matrix M2, and after replacing the set X1 by the set X2. As a result we
choose the transition i3 → j3; we define the matrix M3; we define the sets W3 and X3.

7



The set W3 contains the routes of W that contains transitions i1 → j1 and i2 → j2, but
does not contain the transition i3 → j3. The set X3 contains these routes of W , that
include the transitions i1 → j1, i2 → j2 and i3 → j3.

If the procedure is not interrupted because of the cut down, then after the (n− 2)-th
stage the system of subsets A = {Wj}, we were looking for, is received, as well as (n− 2)
of the transitions of w0.

Stage (n − 1). Using a direct verification, we finalize the construction of w0.
Stage n. If Ff(w0) < R, then we put R = Ff(w0) and w0 to be the new approxi-

mated solution, in other words v = {w0}.

If Ff(w0) = R, then we fill in the list of approximate solutions v := v
⋃

{w0} .

5.2. General structure of the branch and bound algorithm.

1. Form a list A = {W }.
2. If A = ∅, then the problem is solved. If A 6= ∅, go to step 3.
3. Choose an element X1 from A and remove it from A.
4. Complete a branch of X1:

(i) Define the non-intersecting subsets Wj , and store them in A.
(ii) Update the current record R and the list of the approximated solutions v.

5. Go back to 2.
Remark 3. The subsets of W , that are included in the list A, are stored with their

characteristics:
• matrix Mx;

• initial value for the lower bound ux;
• vector rx with initial numbering of the rows of the matrix Mx;
• vector rx with initial numbering of the columns of the matrix Mx;
• vector wc that contains the transitions already chosen from w0;
• vector wtx that contains the information for the parts of w0 already built.
Remark 4. For a clearer structure of the program, initially we define four functions:

(1) Function F (X), that calculates for each matrix X its reduced matrix X(r) and its
lower bound ux.

(2) Function G(X), that calculates the weights of the zeroes of X . For each matrix X

it calculates: the matrix v of the coordinates of the zeroes of X , a vector t of the
weights of the zeroes, and the number of zeroes.

(3) Function H(X), that determines together with G(X) the zeroes of X with maxi-
mum weight.

(4) Function S({i, j}) that is determined using rx, cx, wtx. For a chosen transition
i → j, the function S({i, j}) calculates the new coordinates of the barrier (it
prohibits the internal contours) and renews wtx.

Remark 5. The implementation of the Branch and Bound method for solving Prob-
lem 1 is capable of finding not more than initially selected number of optimal routes.

Remark 6. The described program will find a single route, if the condition for cutting
down is ux ≥ R. In Stage 2, Step 2.2 the strict inequality ux > R must be substituted
by the non-strict equality ux ≥ R.

The structure of the program is given in the block diagram in Fig. 1. It is obvious
that adopting this approach allows the reduction of the tests performed by the program.

8



D
e
fi
n
e
th

e
fu
n
c
ti
o
n
s:

F
(x

),
G
(x

),
H
(x

),
S
({

i,
j
}
)

In
tr
o
d
u
c
e
p
ro

b
le
m

c
o
n
d
it
io
n
s:

M
,
f
(i
,
j
),

F
f
(w

),
A

=
{
{
M

,
u
x
,
r
x
,
c
x
,
w
x
,
w
tx

}
}

S
e
le
c
t
X

1
fr
o
m

A

A
:=

A
\
{
X

1
}

C
o
rr
e
c
ti
o
n
o
f
th

e
lo
w
e
r
b
o
u
n
d
:

u
x

:=
u
x

+
x

u
x
≥

R

B
ra

n
ch

o
f
X

1
:

w
e
lo
o
k
fo
r
w

0
a
n
d
c
a
lc
u
la
te

Y
j

A
:=

A
∪

{
Y
j
}

∃
w

0

F
f
(w

0
)
<

R

V
:=

{
w

0
}

R
:=

F
f
(w

0
)

A
=

∅

e
n
df
a
l
s
e

t
r
u
e

t
r
u
e

t
r
u
e

t
r
u
e

f
a
l
s
e

f
a
l
s
e

f
a
l
s
e

Fig. 1. Block diagram of the Branch and Bound method implemented for the Problem 1

5.3. Validation and example. The validation of the program is performed by
solving the following problems.

Problem 1 is solved for the matrix M defined by equation (8). The result of the
exhaustive search method is confirmed.

Problem 1 is solved for the matrix M2, that has been defined as a sub-matrix of the
matrix M1 (see equation (14)). The result of the exhaustive search method is confirmed.
The huge difference is in the execution time of the program – the Branch and bound

method completes for less than a second.

Problem 1 is solved for the matrix CA from [5] p. 289. The result from p. 294 is
obtained.

Let us examine the following example. We solve Problem 1 for the matrix M1, that is
defined with equation (14)). The program implementing the Branch and bound method
solved the problem for less than a second. We obtain minimal price 151, and two optimal
routes:

1 → 13 → 9 → 2 → 7 → 4 → 12 → 15 → 10 → 3 → 6 → 5 → 11 → 14 → 8 → 1

1 → 13 → 2 → 7 → 4 → 12 → 14 → 8 → 15 → 10 → 3 → 6 → 5 → 11 → 9 → 1

6. Conclusions.

6.1. Connection between the travelling salesman problem and the assign-

ment problem. Together with Problem 1 we will examine the assignment problem:

Problem 2. The assignment problem has the same cost matrix M (see equation (5)).
Each assignment can be represented with a permutation v = {i1, i2, . . . , in} of the
elements {1, 2, . . . , n} . The permutation v shows that the k-th candidate is assigned on
the ik-th position. The cost of this assignment is

(21) F1(v) =
n
∑

k=1

M (k, ik) .

9



In the assignment problem the minimal price is searched:

(22) p0 = min
v∈V

F1(v),

where V is the set of all assignments.

We note that any possible route 1 → w2 → w3 → · · · → wn → 1 in Problem 1 defines
a single assignment in v in which candidate 1 is assigned on position w2, candidate w2

is assigned on position w3, candidate w3 is assigned on position w4, etc. Besides that,
Ff(w) = F1(v). Therefore,

(23) p0 ≤ r0,

because {Ff(w) : w ∈ W} ⊂ {F1(v) : v ∈ V }.

The above shows that the Branch and bound method can be used to solve Problem
2, and gives a better lower bound of branching. In this case it is better to modify the
implementation of the method, because:

• if the optimal assignment has a single cycle, then p0 = r0, and this gives directly
the solution of the Problem 1;

• if the optimal assignment has k > 1 cycles, then r0 − p0 can be an arbitrarily big
number which can be shown easily with an example. In this case we select the cycle,
that has the fewest number of edges and we perform branching on each separate
edge of the selected cycle.

6.2. Integer programming. The symbolic computation system Mathematica has
a built-in function LinearProgramming[c, m, b] that solves the linear programming

problem. We will bring the Problem 1 to a problem that can be solved with the function
LinearProgramming[c, m, b].

We represent each possible route with an n× n matrix X with elements:

(24) xij =

{

1, if the route contains the transition i → j

0, otherwise.

Hence, the elements of X fulfill the condition:

(25) xij ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n} and ∀j ∈ {1, 2, . . . , n}.

The price of the admissible route is F2(X) =

n
∑

i=1

n
∑

j=1

M (i, j)xij .

The condition that the travelling salesman must visit each city only once imposes the
following restrictions on the matrix X :

(26)

n
∑

i=1

xij = 1

(27)

n
∑

j=1

xij = 1

The requirement that X must define a single cycle imposes the following restrictions
on the elements of the matrix X :

(28) ui − uj + nxij ≤ n− 1; ui ≥ 0, i, j ⊂ {1, 2, . . . , n} and i 6= j.

Using the above, Problem 1 is brought to the problem of finding the minimum of

10



the function F2(X) with conditions (25), (26), (27), and (28), which can be solved using
the function LinearProgramming[c, m, b]. Certain inconveniences are caused by the
conditions (28). Even for small n the number of conditions is big enough, because it is
equal to n(n− 1). In particular, in the case of matrix M1 we will have 210 conditions.

We will point out that the problem for finding the minimum of the function F2(X)
brings the solution of the Problem 2. This allows us to use the above algorithm to solve it.

The integrated environment of the symbolic computation system gives us the opportu-
nity for comfortable implementation of the algorithms that solve Problem 1. This allows
us to solve many generalizations and applications of the travelling salesman problem.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[2] E. L. Lawler. The Travelling Salesman Problem: A Guided Tour of Combinatorial Opti-
mization. Wiley-Interscience series in discrete mathematics and optimization, John Wiley &
sons, 1985.

[3] A. Schrijver. A Course in Combinatorial Optimization, Course notes. University of Ams-
terdam and CWI Amsterdam, 2017.

[4] Х. Кристофидес. Теория графов. Алгоритмический подход. Мир, 1978.
[5] Кр. Манев. Алгоритми в графи. Основни алгоритми. КЛМН, София, 2013.
[6] И. И. Меламед, С. И. Сергеев, И. Х. Сигал. Задача коммивояжера. Вопросы

теории. Автоматика и телемеханика, 9 (1989), 3–33.
[7] И. Х. Сигал, А. П. Иванова. Введение в прикладное дискретное программирование:

модели и вычислительные алгоритмы. ФИЗМАТЛИТ, 2002.

Marin Laskov Marinov
e-mail: mlmarinov@nbu.bg
Lasko Marinov Laskov
e-mail: llaskov@nbu.bg
New Bulgarian University
Informatics Department
21 Montevideo Str.
1618 Sofia, Bulgaria

РЕШАВАНЕ НА ЗАДАЧАТА НА ТЪРГОВСКИЯ ПЪТНИК СЪС

СРЕДСТВАТА НА СИСТЕМАТА MATHEMATICA

Марин Маринов, Ласко Ласков

В статията се разглежда класическата задача за търговския пътник. Със сред-
ствата на системата Mathematica са представени евристичен метод, методът на
пълното изчерпване и методът разклоняване и граници. Чрез числени експери-
менти се илюстрират различните възможности на програмните реализации на
отделните методи.

11


