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Abstract

Shortest path problem in a network is a fundamental task in combinatorial
optimization. Many applications in practice involve optimization two conflicting
criteria and from a biobjective shortest path problems. Since there does not exist
a single solution that is optimal with respect to both objective functions, we are
interested in a special set of solutions for which any of the two criteria cannot
be improved without declining the other: Pareto optimal set or Pareto front.
In this paper we analyze in details the biobjective shortest path problem in
the case in which the first objective function is a linear one (minimal length
paths) and the second one is a nonlinear bottleneck function (maximal capacity
paths). We present an exact solution based on two modifications of the Dijkstra’s
algorithm that finds the complete description of all Pareto optimal solutions. We
provide detailed proofs of the correctness and the computational complexity of
the presented algorithms and numerical examples that illustrate their execution.

Keywords: combinatorial optimization, biobjective shortest path problem, Pareto
front

1 Introduction

Shortest path problem in networks is a fundamental task in both graph theory [1] and
combinatorial optimization [2]. In its standard single-criterion formulation, it is the
problem of finding a path between a source and a destination vertex in a network,
where the length of the path, defined as the sum of the weights of the edges that
constitute it, is minimized.
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While the above single criterion formulation has numerous applications, many
problems in practice require more than one, and in particular, two criteria to model
more accurately the task being of interest. Optimization problems that consists of
two objective functions are usually referred to as bicriteria or biobjective optimization
problems and are a subject of extensive research in computational optimization (see
for example [3], [4], [5], [6]).

We exclude the trivial situation in which the two objective functions of a biobjective
shortest path problem allow us to find a single solution that is optimal for both of
them simultaneously, and we focus on the case in which they are conflicting. If the
two objective functions are in contradiction, or even they are incommensurable [7], we
are interested in finding a special set of nondominated solutions that in literature is
referred to as Pareto optimal set [8] or Pareto front [9].

Depending on the concrete problem that is solved, the cardinality of the Pareto
optimal set can be a relatively big number, and at the same time, all nondominated
solutions can be considered equally preferable from mathematical point of view. Even
though in practice usually a single Pareto optimal solution is selected, the detailed
information about the Pareto front can be used for a valuable analysis that can clar-
ify the interdependencies between decision variables, objective function and problem
constraints [8]. Also, a precise description of the Pareto front will give the decision
maker the complete picture needed to make an informed decision.

The choice of the particular objective functions determines different types of biob-
jective shortest path problems. In his notable work [10] Hansen describes ten different
types of biobjective path problems by combining pairwise six objective functions. He
introduces two criteria in the network (length and cost) and defines the bicriteria path
problems by defining the objective functions that are applied on each of them. In our
research we focus on one of these problems: with the first criterion being a linear func-
tion representing the path length and the second criterion being a nonlinear bottleneck
function representing the path capacity.

Hansen clearly defines that a path that is not efficient is dominated by at least
one efficient path. Then the goal that is formulated in [10] is to find the minimal
complete set of the efficient paths. His approach is generalized by Martins [11] for
the multicriteria case and the latter work became the basis of multiple approaches in
the literature. Since then, many of the published works that aim to find the minimal
complete set of the nondominated solutions or an approximation of the Pareto front
[5] are based on heuristic methods [12], [9], and some of them are based on exact
algorithms [13], [3].

In general, the number of elements of the complete Pareto front can be a large
number [7] and the problem of their calculation is NP-hard [14]. In recent literature is
a common practice to adopt methods of artificial intelligence in the case of NP-hard
optimization problems [15]. On the other hand, it has been shown that in practice
many bicriteria shortest path problems lead to a number of Pareto optimal solutions
that is small enough to make the calculation of the complete Pareto front feasible [14].
Indeed, in literature there are a number of works that calculate all Pareto optimal
solutions of a predefined bibojective shortest path problem, for example [16], [4], [6].
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The goal of our research is to find all Pareto optimal solutions of the minimal length
maximal capacity shortest path problem. We propose an exact label-setting technique
that is based on two helper modifications of the Dijkstra’s algorithm [17] that are used
to represent both all shortest paths and maximal capacity paths in the input network.
The general algorithm takes advantage from both helper methods and constructs the
complete description of the Pareto front. We provide detailed mathematical proofs of
the correctness and computational complexity of the proposed algorithms.

The paper is structured as follows. In Section 2 we provide basic notations and
definitions, we formulate the two helper problems and the general problem that is
solved in our research. In Section 3 we describe the proposed algorithms together with
their proofs, numerical examples that illustrate them, and we discuss the effectiveness
of the computer program implementation. Finally, in Section 4 we give our conclusions.

2 Problem formulation

2.1 Basic notations and definitions

With G = (V,E) we denote the digraph (directed graph) that has n = |V | number of
vertices and m = |E| number of directed edges. We label the vertices of G with the
natural numbers from 1 to n, and without loss of generality V = {1, 2, . . . , n}. We
denote each edge e ∈ E with the ordered pair (u, v), where u, v ∈ V are vertices and
e is directed from u to v, and then E ⊆ V 2.

We will define two weight functions on the set of edges of the digraph. The first
weight function f : E → R+ assigns to each edge (u, v) the positive real number
f(u, v). We will call f(u, v) the length of the edge (u, v).

The second weight function is g : E → R+, where R+ = R ∪ {∞}. It assigns to
each edge (u, v) ∈ E the positive real number g(u, v) if the edge (u, v) is restricted, or
∞ if the edge is not restricted. We will call the value g(u, v) the capacity of the edge
(u, v) and it defines the restriction that is imposed on the edge.

The digraph G = (V,E) with the two weight functions that are defined on its
edges form the network N = (V,E, f, g) [18]. We adapt the standard adjacency list
representation of a graph [19] to form the adjacency list Adj of a network.

The adjacency list Adj of the network N = (V,E, f, g) is an array of n = |V |
lists, where each list Adj[u], u ∈ V , contains a triple (v, f(u, v), g(u, v)) for each edge
(u, v) ∈ E, where f(u, v) is the length and g(u, v) is the capacity of the edge. It has
the following general form:

Adj = [⟨(v, f(u, v), g(u, v)), . . .⟩, . . .]. (1)

We will denote that the adjacency list is an attribute of the network with N.Adj.
A path in the network N is a finite sequence of vertices and edges of the type:

v0, e1, v1, e2, . . . , vt−1, et, vt, (2)
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where vj ∈ V , for all j = 0, 1, . . . , t are distinct vertices and ei = (vi−1, vi) is the edge
from vi−1 to vi with ei ∈ E for all i = 1, 2, . . . , t. The path consists of t + 1 vertices
and t edges. We will call v0 the source vertex of the path and vt – the terminal vertex.

A path that connects the source vertex v0 and the terminal vertex vt is called a
(v0, vt)-path and is represented by the ordered sequence α of distinct vertices:

α = (v0, v1, . . . , vt). (3)

Note that in a given network there may be many (v0, vt)-paths.
For each path α = (v0, v1, . . . , vt) we define its path length as the function

x(α) =

t∑
i=1

f(vi−1, vi) (4)

and we define its path capacity as the function

y(α) = min
1≤i≤t

{g(vi−1, vi)} . (5)

The two functions x(α) and y(α) define the objective functions of the shortest path
optimization problem that is given in Definition 2. Note that x(α) is a linear function,
while y(α) is a nonlinear bottleneck function.

In our considerations we will focus on paths with source vertex v0 = 1, which will
not limit the possible cases, because we can relabel the vertices of the network N if we
want to consider paths with another staring vertex. For convenience, we will denote
the set of all (1, u)-paths with Wu.

For each vertex u ∈ V with δ(u) we denote the distance form the source vertex
v0 = 1 to the terminal vertex vt = u, where:

δ(u) = min
α∈Wu

{x(α)}. (6)

If there is no (1, u)-path in the network, we set δ(u) =∞.
For each u ∈ V with κ(u) we denote its vertex capacity, where:

κ(u) = max
α∈Wu

{y(α)}. (7)

In the case in which a (1, u)-path in the network does not exist, then κ(u) = −∞.
For each set of (1, u)-paths Wu, Pareto optimal path is given by Definition 1.

Definition 1 We call the path α ∈ Wu Pareto optimal when there does not exist another
path β ∈ Wu, for which any of the following two conditions is fulfilled:

• x(β) < x(α) and y(β) ≥ y(α);
• x(β) ≤ x(α) and y(β) > y(α).
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Based on the definition of Pareto optimal path, we can now define the biobjective
optimization problem that we examine in this paper.

Definition 2 Given the network N = (V,E, f, g), starting vertex 1 and terminal vertex n,
the minimal length maximal capacity shortest path problem is the problem to find a Pareto
optimal path α ∈ Wn, where Wn forms the feasible set.

A shortest path problem Definition 2 may have many solutions α ∈ Wn. The set
of all such Pareto optimal paths is called Pareto optimal set or Pareto front.

Definition 3 We denote the set of all Pareto optimal paths in the network N with P , where
P forms the Pareto front of the biobjectove shortest path problem.

We say that two paths α and β are equivalent, denoted α ∼ β, when x(α) = x(β)
and y(α) = y(β). Also, we will say that the path β is dominated by the path α,
denoted β ≺ α, when x(α) < x(β) and y(α) ≥ y(β) or x(α) ≤ x(β) and y(α) > y(β).

Definition 4 For all classes of equivalent Pareto optimal paths Pi,

P =
K⋃
i=1

Pi, (8)

where K is the number of such classes. For short, we will call Pi equivalence classes.

With the respect of the distance (6) and capacity (7), we define a subnetwork
and digraph respectively that are used formulate the two helper algorithms given in
Section 3.1 and Section 3.2.

Definition 5 We will say that N̂ = (V, Ê, f, g) is a shortest paths subnetwork in the network
N = (V,E, f, g), if the following two properties hold:

1. Every (1, n)-shortest path in N is also a (1, n)-path in N̂ .

2. Every (1, n)-path in N̂ is a (1, n)- shortest path in N .

Definition 6 We say that G̃ = (V, Ẽ) is a maximal capacity digraph of the network N =
(V,E, f, g), if the following two properties hold:

1. Every (1, n)-maximal capacity path in N is also a (1, n)-path in G̃.

2. Every (1, n)-path in G̃ is also a (1, n)-maximal capacity path in N .

2.2 The complete Pareto front problem

Based on the definitions of the Pareto optimal path in Definition 1 and the biobjective
shortest path problem in Definition 2, we will formulate the complete Pareto front
problem that is the subject of the presented research.
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Problem 1 (Complete Pareto front) Calculate the set P of all Pareto optimal paths α ∈ Wn

that form the Pareto front of the minimal length maximal capacity shortest path problem
(Definition 2).

To solve the complete Pareto front problem stated above, we will examine sepa-
rately the two single-objective problems that are defined by the objective functions (4)
and (5) respectively. Based on the fact that the solution of a shortest path problem,
in the general case, will consist of a whole set of optimal paths rather than a unique
single solution, we define the following two helper problems.

Problem 2 (Shortest paths subnetwork) Given the network N = (V,E, f, g), compute the

shortest paths subnetwork N̂ = (V, Ê, f, g).

Problem 3 (Maximal capacity paths digraph) Given the network N = (V,E, f, g), compute

the maximal capacity paths digraph G̃ = (V, Ẽ).

An important property of both shortest paths subnetwork N̂ and maximal capacity
paths digraph G̃ is that they allow us to construct respectively the complete list of all
paths with minimal length, and the complete list of all paths with maximal capacity.

3 The proposed shortest path algorithms

In this section we propose two modified versions of the Dijkstra’s algorithm [17] that
solve the two helper problems given in Problem 2 and Problem 3, and the final algo-
rithm that generates the complete description of the Pareto front as given in Problem
1. The implementation of the algorithms assumes that the network N = (V,E, f, g) is
represented using the adjacency list N.Adj. Without loss of generality, the source and
terminal vertices are selected v0 = 1 and vt = n respectively.

Table 1 Fibonacci heap functions for min/max-priority queue Q

Function Description Complexity

insert(Q, v) inserts an element v into Q Θ(1)
extract(Q) extracts and returns the min/max element from Q Θ(logn)
update(Q, v, k) decrease/increase the element v with the new key k Θ(1)

Both helper algorithms use a priority queue Q abstract data type (ADT) that
is implemented using the Fibonacci heap data structure [20]. Using the technique of
amortized analysis it is proved that Fibonacci heap introduces a significant speedup of
the Dijkstra’s algorithm to O(n log n+m) (see [19]), and this fact plays an important
role in the computational complexity analysis of the proposed method.

In the algorithm that constructs the shortest paths subnetwork (Section 3.1) Q
is a min-priority queue, while in the algorithm that constructs the maximal capacity
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digraph (Section 3.2) Q is a max-priority queue. In both cases we will use the Fibonacci
heap functions with their corresponding implementations, as they are given in Table
1 along with their corresponding computational complexities [19].

3.1 Shortest paths subnetwork

We will solve the first helper Problem 2 to construct the subnetwork N̂ = (V, Ê, f, g)
that is composed by the all shortest paths in N , as given in Definition 5. The main
function of the modified Dijkstra’s algorithm is minsum(G.Adj) (given in Algorithm

2) which returns the adjacency list of the network N̂ .
The main concept of the algorithm is that it splits the set of all vertices of the

input network V into two subsets: the subset V0 of vertices that are not yet traversed,
and the subset U = V \ V0 of the vertices that are traversed. As the algorithm visits
the vertices, it guarantees that

δ(v) ≥ δ(u), (9)

for each vertex v ∈ V0 and each vertex u ∈ U . Before the execution of the first
iteration, V0 = V and U = ∅. Then, on each of the n consecutive iterations one vertex
is selected from V0 and is transferred into U .

The algorithm manages three data structures: an array d, an adjacency list of
ingoing neighbors p, and a min-priority queue Q that is implemented with a Fibonacci
heap.

For each vertex u ∈ V the array d stores the current estimate of the distance of
(1, u)-path. In the initial stage of the algorithm all elements of d are set to ∞, except
d[0] which is set to 0 (see line 2 of Algorithm 2).

The adjacency list p stores the ingoing neighbors of the shortest path digraph Ĝ
that forms the network N̂ . It is an array of lists in which the element p[v] stores a list

of all vertices u, such that (u, v) ∈ Ê.
The min-priority queue Q contains the set of vertices V0 that are not yet traversed

by the algorithm. It is keyed by the estimates of the shortest path lengths stored in
d, which means that when a vertex u is inserted into Q its key will be d[u].

Algorithm 1 Relaxation function applied on the distance attribute

1: function relax(u, v)
2: new ← d[u] + f(u, v)
3: if d[v] > new then
4: d[v]← new
5: update(Q, v, new) ▷ decrease the key of v to store new
6: p[v]← {u}
7: else if d[v] = new then
8: p[v]← p[v] ∪ {u} ▷ store alternative paths
9: end if

10: end function
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One each step of the algorithm it performs the relaxation function in the Algo-
rithm 1 on a selected edge (u, v). It calculates a new estimate of the distance of the
corresponding (1, v)-path for the vertex v (line 2). If the new estimate surpasses the
current, it replaces the values d[v], the key in Q is decreased, and the vertex u is stored
as a parent of v in the shortest paths ingoing adjacency list p. Otherwise, if the new
estimate is equal of the current one, the edge (u, v) is stored as an alternative branch
in p.

Algorithm 2 Constructs shortest path subnetwork N̂

1: function minsum(N.Adj)
2: d[1] = 0, d[i] =∞, for i = 2, 3, . . . , n
3: p[i] = ⟨∅⟩, for i = 1, 2, . . . , n
4: for each u ∈ V do
5: insert(Q, u) ▷ min-priority queue keyed by d
6: end for
7: while Q ̸= ∅ do
8: u← extract(Q)
9: for each vertex v ∈ N.Adj[u] do

10: relax(u, v)
11: end for
12: end while
13: N̂ .Adj ← outadj(p)

14: return d[n], N̂ .Adj
15: end function

The vertex u that is selected as the starting vertex of the edges that are relaxed,
is determined by the minimum element in the min-priority queue Q, returned by
extract(Q) on line 8 of Algorithm 2. The main loop of the algorithm will stop when
all vertices are transferred from V0 to U and Q becomes empty. Finally, the outgoing
adjacency list N̂ .Adj of the shortest paths network is constructed from the ingoing
adjacency list p by the function outadj(p). This function (Algorithm 3) composes each

edge (u, v) from the digraph Ĝ given by p and it takes the corresponding edge length
f(u, v) and capacity g(u, v) from the original adjacency list N.Adj.

Proposition 1 The function minsum(N.Adj) correctly constructs the shortest path subnet-

work N̂ .

Proof We will analyze the while loop of Algorithm 2 using the method of mathematical
induction. We denote the set of all vertices that are traversed after the k-th iteration with
Uk and the set of their outgoing neighbors with Xk = {v : v ∈ N.Adj[u], u ∈ Uk}. With
Vk = V \Uk we denote all the vertices that are not yet traversed after the k-th iteration. We
will prove that for the current states dk and pk of the array d and the adjacency list p, the
set of properties, given in Property 1 and Property 2, hold.
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Algorithm 3 Construct the outgoing N̂ .Adj from the ingoing adjacency list p

1: function outadj(p)
2: for each end vertex v ∈ p do
3: for each start vertex u ∈ p[v] do

4: N̂ .Adj[u]← N̂ .Adj[u] ∪ {(v, f(u, v), g(u, v))}
5: end for
6: end for
7: return N̂ .Adj
8: end function

Property 1 For the k-th iteration of the Algorithm 2 we define the following properties:

1. dk[v] =


δ(v), if v ∈ Uk

min
u∈Uk,(u,v)∈E

{δ(u) + f(u, v)}, if v ∈ Vk ∩Xk

∞, if v ∈ Vk \Xk

2. Uk = {u1, u2, . . . , uk} and δ(u1) ≤ δ(u2) ≤ . . . ≤ δ(uk), where u1 = 1.
3. For each v ∈ Vk∩Xk exists a path α = (1, v1, . . . vl, v) such that x(α) = dk[v], the vertices

in the path α1 = (1, v1, v2, . . . , vl) belong to Uk, and x(α1) = δ(vl).
4. δ(u) ≤ δ(v) for each u ∈ Uk and each v ∈ Vk.

Property 2 For each vertex v the adjacency list p[v] contains all vertices u ∈ Uk for which
there exists a (1, v)-path α with the following properties:

1. The vertex u is the one before the last vertex in α.
2. All vertices in α without v are elements of Uk.
3. x(α) = dk[v].

Base case. It is defined by the first two iterations of the while loop. We verify directly
that Property 1 and Property 2 are fulfilled for U2 = {u1, u2}, u1 = 1, X2, V2 = V \ U2, d2
and p2.

Inductive step. We assume that after the k-th iteration Uk = {u1, u2, . . . uk}, Xk, Vk, dk
and pk satisfy Property 1 and Property 2. Let Q ̸= ∅ (there are vertices in the set Vk) and
the loop enters its (k + 1)-st iteration. We will prove that for Uk+1, Xk+1, Vk+1, dk+1 and
pk+1, the two properties hold.

The call to the extract(Q) function on line 8 ensures that the vertex uk+1 that is selected
from the priority queue is such that dk[uk+1] = min

v∈Vk

{dk[v]}.

We will note that if min
v∈Vk

{dk[v]} = ∞, then for for each vertex v ∈ Vk a (1, v)-path does

not exist and both dk and pk will not change during the execution of the algorithm. In this
case dk[uk+1] = δ(uk+1) and p is the ingoing adjacency list of the digraph Ĝ that defines

the network N̂ .
We examine the case in which min

v∈Vk

{dk[v]} < ∞. The selection of the vertex uk+1 defines

the sets Vk+1 = Vk \ {uk+1} and Uk+1 = Uk ∪ {uk+1}.
We will prove that for the selected vertex uk+1, the equality dk[uk+1] = δ(uk+1) holds.

Let α = (1, v1, . . . , vs−1, vs, vs+1, . . . , vl, uk+1), be an arbitrary (1, uk+1)-path. With s we
denote the smallest possible index for which vs /∈ Uk. Then vi ∈ Uk for i = 1, 2, . . . , s − 1
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and α1 = (1, v1, . . . , vs−1, vs) is a (1, vs)-path for which all inner vertices are from Uk. From
the inductive assumption Property 1.1 we get that x(α1) ≥ dk[vs]. From the selection of
the vertex uk+1 it follows that dk[vs] ≥ dk[uk+1] and then x(α1) ≥ dk[vs] ≥ dk[uk+1].
Since x(α) = x(α1) + f(vs, vs+1) + · · · + f(vl, uk+1) ≥ x(α1) ≥ dk[uk+1], it follows that
dk[uk+1] = δ(uk+1).

From the inductive assumption δ(u) ≤ δ(v), ∀u ∈ Uk, ∀v ∈ Vk it follows that

δ(uk) ≤ δ(uk+1), (10)

which proves that Property 1.2 holds for Uk+1.
Now we will prove that δ(u) ≤ δ(v), ∀u ∈ Uk+1 and ∀v ∈ Vk+1. From the inequality (10)

it follows that it is enough to prove that δ(uk+1) ≤ δ(v), ∀v ∈ Vk+1.
Let v ∈ Vk+1 and α be an (1, v)-path for which x(α) = δ(v). Also, let α =

(1, v1, . . . , vs−1, vs, vs+1, . . . , vl, v), where s is the smallest index for which vs /∈ Uk. Then, in
analogy with above proof, we get that δ(v) = x(α) ≥ f(1, v2)+f(v2, v3)+ · · ·+f(vs−1, vs) ≥
dk[vs] ≥ dk[uk+1] = δ(uk+1), which proves Property 1.4.

The inner for loop (lines 9 to 11 of Algorithm 2) modifies the vector dk and the adjacency
list pk and we get dk+1 and pk+1. During this modification, only the components dk[v]
and pk[v] for which v ∈ N.Adj[uk+1] can be changed. From Algorithm 1 and the fact that
dk[uk+1] = δ(uk+1) it follows

dk+1[v] = min{dk[v], δ(uk+1) + f(uk+1, v)}, (11)

for all v ∈ N.Adj[uk+1]. Besides that, for v /∈ N.Adj[uk+1] it is fulfilled that dk+1[v] = dk[v].
Particularly, dk+1[v] = dk[v] = ∞ for each v ∈ Vk+1 \Xk+1.

Let v ∈ Vk+1 ∩Xk+1. The following two cases are possible.

• v /∈ Xk and then dk[v] = ∞. From (11) it follows that dk+1[v] = δ(uk+1) + f(uk+1, v).
• v ∈ Xk and from the inductive assumption dk[v] = min

u∈Uk,(u,v)∈E
{δ(u) + f(u, v)}.

Therefore
dk+1[v] = min

u∈Uk+1,(u,v)∈E
{δ(u) + f(u, v)}, (12)

for all v ∈ Vk+1 ∩Xk+1.
The observation that for each v it holds dk[v] ≥ dk+1[v] ≥ δ(v) and therefore dk+1[v] =

δ(v), v ∈ Uk+1, finalizes the verification of Property 1.
We will prove that Property 2 also holds after the (k+1)-st iteration of the while loop.

Let α = (1, v1, . . . , vl, v), is a path such that x(α) = dk+1[v] and vj ∈ Uk+1, j = 1, 2, . . . l.
We will prove that vl ∈ pk+1[v].

If vl = uk+1, then by definition vl ∈ pk+1[v].
Let vl ̸= uk+1. Then there exists s ≤ k, such that vl ∈ Us and vl /∈ Us−1. In this case

ds+1[v] ≤ δ(vl) + f(vl, v) ≤ x(α) = dk+1[v]. Since s+ 1 ≤ k+ 1, then ds+1[v] ≥ dk+1[v] and
therefore ds+1[v] = δ(vl) + f(vl, v) = dk+1[v]. Then vl ∈ ps+1[v] and ps+1[v] ⊆ pk+1[v].

The while loop completes after n iterations. From the proof above, it follows that for
each vertex v from V the following two statements hold:

• dn[v] = δ(v);
• pn[v] contains every vertex u ∈ V that is the one before the last vertex in (1, v)-path with

length δ(v).

Let α = (1, v1, . . . , vl, v) is a path, such that x(α) = δ(v). Then for the path αj =
(1, v1, . . . , vj), j = 1, 2, . . . , l it holds that x(αj) = δ(vj). Besides that, from Property 2
it follows that vl ∈ pn[v] and for each j = 2, 3, . . . , l it holds vj−1 ∈ pn[vj ]. Hence, α is

(1, v)-path in N̂ .
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The opposite statement is also true. Let α = (1, v1, . . . , vl, v) is a (1, v)-path in N̂ . We
will prove that x(α) = δ(v). Since v0 = 1 ∈ pn[v1], then δ(v1) = f(1, v1). By construction
v1 ∈ pn[v2] and therefore δ(v2) = δ(v1) + f(v1, v2) = x(α2), where α2 = (1, v1, v2). By
analogy we prove that x(α) = δ(v).

The correctness of the function outadj(p) (Algorithm 3) completes the proof of the
proposition. □

(5, 3)

)

(3,
1

3

2

5

Fig. 1 Example network N1 composed by five vertices and eight edges with length and capacity given
next to them

Example 1 Let N1 is a network (see Figure 1), represented by the following adjacency list:

N1.Adj = [⟨(2, 2, 4), (3, 5, 3)⟩, ⟨(3, 3, 5), (4, 6, 4), (5, 5, 3)⟩,
⟨(4, 3, 6), (5, 1, 1)⟩, ⟨(5, 1, 7)⟩, ⟨∅⟩].

(13)

We will illustrate the calculations of the function minsum(N1.Adj).
Firstly, the algorithm initializes the data structures d0 = [0,∞,∞,∞,∞], p =

[⟨∅⟩, ⟨∅⟩, ⟨∅⟩, ⟨∅⟩, ⟨∅⟩] and the min-priority queue Q that stores V0 = {1, 2, 3, 4, 5} keyed by
the corresponding values in d0.

The first iteration of the while loop results in the set of traversed vertices U1 = {1},
V1 = V0\{1} = {2, 3, 4, 5}, d1 = [0, 2, 5,∞,∞] and p1 = [⟨∅⟩, ⟨1⟩, ⟨1⟩, ⟨∅⟩, ⟨∅⟩]. The outgoing
neighbors of the traversed vertices are represented in the set X1 = {2, 3}.

Because V1 ̸= ∅, the while loop executes its second iteration. The function extract(Q)
defines that u2 = 2, since min{2, 5,∞,∞} = 2 = d1[2]. Then the set of the traversed vertices
becomes U2 = {1, 2}, and the vertices that are not traversed are V2 = V1\{2} = {3, 4, 5}. The
outgoing neighbors of U2 are the elements of the set X2 = {2, 3, 4, 5}. Since the neighbors
of the vertex 2 in N1.Adj[2] are the vertices 3, 4 and 5, the for loop will modify only d1[j]
and p1[j] for j ∈ {3, 4, 5} using the relax(u, v) function. The result is d2 = [0, 2, 5, 8, 7] and
p2 = [⟨∅⟩, ⟨1⟩, ⟨1, 2⟩, ⟨2⟩, ⟨2⟩].

Since V2 ̸= ∅, the while loop enters its third iteration. We will note that in each iteration
of the loop, the algorithm transfers a vertex, that is selected by the extract(Q) function, from
the set Vk into the set Uk. Therefore, the while loop will have that much iterations, as the
number of vertices in the network. In the examined case, the loop will have five iterations.

The values of Uk, dk and pk for each of the next three iterations k = 3, 4 and 5 are:

• U3 = {1, 2, 3}, d3 = [0, 2, 5, 8, 6], p3 = [⟨∅⟩, ⟨1⟩, ⟨1, 2⟩, ⟨2, 3⟩, ⟨3⟩];
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• U4 = {1, 2, 3, 5}, d4 = [0, 2, 5, 8, 6], p4 = [⟨∅⟩, ⟨1⟩, ⟨1, 2⟩, ⟨2, 3⟩, ⟨3⟩];
• U5 = {1, 2, 3, 5, 4}, d5 = [0, 2, 5, 8, 6], p5 = [⟨∅⟩, ⟨1⟩, ⟨1, 2⟩, ⟨2, 3⟩, ⟨3⟩].

We will note that after each iteration, the set of the outgoing neighbors of the traversed
nodes either remains unchanged, or is increased. In this example, X2 = X3 = X4 = X5.

From Proposition 1 it follows that the distance array is d5 = [0, 2, 5, 8, 6] and the

digraph Ĝ1 of the shortest paths subnetwork N̂1 has ingoing adjacency list stored in
p5 = [⟨∅⟩, ⟨1⟩, ⟨1, 2⟩, ⟨2, 3⟩, ⟨3⟩].

In the particular example, the shortest paths subnetwork N̂1 results by removing the two
edges (2, 5) and (4, 5) from N1.

Using the ingoing adjacency list, the function outadj(p) constructs the outgoing adjacency

list N̂1.Adj = [⟨(2, 2, 4), (3, 5, 3)⟩, ⟨(3, 3, 5), (4, 6, 4)⟩, ⟨(4, 3, 6), (5, 1, 1)⟩, ⟨∅⟩, ⟨∅⟩]. Algorithm 2

returns the shortest distance 6 and the adjacency list N̂1.Adj.
Using exhaustive search we verify that the subnetwork N̂1 contains exactly two (1, 5)-

paths α = (1, 3, 5) and β = (1, 2, 3, 5) and their length is x(α) = x(β) = 6.

Proposition 2 The computational complexity of the function minsum(N.Adj) is O(n logn+
m).

The proof of Proposition 2 follows directly from the proof of the computational
complexity of the Dijkstra’s algorithm in the case in which Fibonacci heap is used to
implement the priority queue ADT [19]. The advantage of the Fibonacci heap over
other implementations such as the binary heap in this case is in the computational
complexity of the insert(Q, v) and update(Q, v, k) functions (see Table 1). Note that
update(Q, v, k) which is triggered in the relaxation function in Algorithm 1, decreases
the key of the element v by replacing it with the new key k. Updating a key value also
may require heap restructure, which in this case is implemented efficiently.

3.2 Maximal capacity paths digraph

In this section we will provide an algorithm that solves the second helper Problem 3
and constructs maximal capacity digraph G̃ = (V, Ẽ) that is given in Definition 6.

The function maxmin(G.Adj) in Algorithm 6 constructs the adjacency list of the

outgoing neighbors G̃.Adj of the maximal capacity digraph by first calculating the
capacity of the destination vertex n by calling the function capacity(N.Adj). Algo-
rithm 5 is a modification of the Dijkstra’s algorithm that is based on the relaxation
function in Algorithm 4 which calculates the maximal capacity of the vertex n of the
network.

This modification of the Dijkstra’s algorithm manages an array d, which in this case
stores the estimates of corresponding vertices’ capacities, and a max-priority queue Q
that is keyed by the values in d. As in the case of the first helper algorithm described
in Section 3.1, Q is implemented using a Fibonacci heap.

At the initialization stage of the capacity(N.Adj) function, all elements of the
array d are initialized with −∞, except d[1] which is set to∞. All vertices are inserted
into the max-priority queue Q that represents the set V0 of vertices that are not yet
traversed by the algorithm. When a vertex u is inserted into Q, its key is d[u].
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Algorithm 4 Relaxation function applied on the capacity attribute

1: function relax(u, v)
2: new ← min {d[u], g(u, v)}
3: if d[v] < new then
4: d[v]← new
5: update(Q, v, new) ▷ increase the key of v to store new
6: end if
7: end function

On each iteration of the while loop of Algorithm 5, the vertex with the maximal
capacity estimate u is extracted from the priority queue, and its neighbors are pro-
cessed by the relaxation function in Algorithm 4. Thus, on each iteration a vertex u
is removed from the set V0, and it is transferred into the set U = V \ V0 of traversed
vertices.

When an edge is relaxed (Algorithm 4), a new estimate for the capacity of the end
vertex is calculated as the minimum of the current estimate and the corresponding
weight g(u, v). If the new estimate surpasses the existing one, it replaces it in the array
d and also the corresponding key is increased in the Fibonacci heap by the function
call on line 5.

Algorithm 5 Calculate the capacity of the vertex n

1: function capacity(N.Adj)
2: d[1] =∞, d[i] = −∞, for i = 2, 3, . . . , n
3: for each u ∈ V do
4: insert(Q, u) ▷ max-priority queue keyed by d
5: end for
6: while Q ̸= ∅ do
7: u← extract(Q)
8: for each vertex v ∈ N.Adj[u] do
9: relax(u, v)

10: end for
11: end while
12: return d[n]
13: end function

The while loop of the capacity(N.Adj) function will terminate when the priority
queue Q does not contain any vertices, or with other words, when V0 is empty and all
vertices (except the destination vertex n) have been traversed by the algorithm. Then
the element with index n of the vector d will contain the capacity of the destination
vertex.

Proposition 3 The function capacity(N.Adj) correctly calculates the capacity of the
destination vertex n in the network N .
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Proof In analogy to the proof of Proposition 1, we denote the set of vertices that are not
yet traversed on the k-th iteration with Vk, the set of all traversed with Uk and the set of
outgoing neighbors of the vertices in Uk with Xk. We will use the method of mathematical
induction to analyze the calculations of the while loop of the algorithm.

Base case. The base case of the induction is defined by the first two iterations of the
while loop.

The first iteration results in the extracted node u1 = 1, and the corresponding sets
U1 = {1} and X1 = {v : v ∈ N.Adj[1]}. The components of the capacity estimates array d0
are modified and d1[v] = g(1, v) for all v that are adjacent to the vertex 1.

The second iteration extracts u2 from Q, such that its corresponding key d1[u2] is max-
imal. We will assume that d1[u2] ̸= −∞, otherwise u1 is an isolated vertex in N . The
corresponding sets are defined U2 = U1 ∪ {u2} and X2 = {v : v ∈ N.Adj[1] ∪N.Adj[u2]}.

Now let α is an arbitrary (1, u2)-path. We will examine the two possibilities:

1. α contains only two vertices. Then y(α) = g(1, u2) = d1[u2].
2. α = (1, v, . . . , u2), where v ̸= u2. Then y(α) ≤ g(1, v) = d1(v) ≤ d1(u2).

This proves that d1[u2] = κ(u2).
The relaxation step is performed for each v ∈ G.Adj[u2] and as a result d2[v] =

max {d1[v],min{κ(u2), g(u2, v)}}. Therefore, d2[v] = −∞, for each v ∈ V2 \X2. Besides that,
for every v ∈ V2 ∩X2 exists a path α, such that y(α) = d2[v] and α = (1, v) or α = (1, u2, v).

From the definition of d2[v] it follows that d1[v] ≤ d2[v] ≤ κ(v), for all v ∈ V0. For each
v ∈ V2 \ X2 it holds that d2[v] = −∞. Now we will prove that for each u ∈ U2 and each
v ∈ V2 the following inequality holds:

κ(u) ≥ κ(v). (14)

Let α = (1, v2, . . . , vl, v) is a path, such that y(α) = κ(v). Two cases are possible:

1. v2 = u2 and then y(α) ≤ g(1, u2) = κ(u2);
2. v2 ̸= u2 and then v2 /∈ U2 and y(α) ≤ g(1, v2) = d1[v2] ≤ d1[u2] = κ(u2).

Therefore, for the path α it holds that κ(v) = y(α) ≤ κ(u2). Since κ(u2) ≤ κ(1), the
inequality (14) is proved.

Inductive step. We assume that the while loop has performed k iterations and the sets
Vk, Uk and Xk are defined. We also assume that Property 3 holds.

Property 3 For the k-th iteration of the Algorithm 5 we define the following properties:

1. dk[v] =


κ(v), if v ∈ Uk

max
u∈Uk,(u,v)∈E

{min {κ(u), g(u, v)}}, if v ∈ Vk ∩Xk

−∞, if v ∈ Vk \Xk

2. Uk = {u1, u2, . . . , uk} and κ(u1) ≥ κ(u2) ≥ . . . ≥ κ(uk), where u1 = 1.
3. For each v ∈ Vk∩Xk exists a path α = (1, v2, . . . vl, v) such that y(α) = dk[v], the vertices

in the path α1 = (v1, v2, . . . , vl) belong to Uk and y(α1) = κ(vl).
4. κ(u) ≥ κ(v) for each u ∈ Uk and each v ∈ Vk.

We will prove that Property 3 holds for the sets Vk+1, Uk+1, Xk+1 and the array dk+1

that are defined by the (k + 1)-st iteration of the algorithm.
It is clear that if max

v∈Vk

{dk[v]} = −∞, then all vertices from Vk are unreachable from the

source vertex u1 = 1. In this case the array dk remains unmodified by the iterations of the
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while loop and κ(v) = −∞ for each v ∈ Vk. That is why we will examine the case in which
max
v∈Vk

{dk[v]} ̸= −∞.

On line 7 the current uk+1 is extracted from the priority queue Q and by definition, it
is the vertex with the maximal corresponding key. Also, this sets Uk+1 = Uk ∪ {uk+1} and
Xk+1 = {v : v ∈ Xk ∪N.Adj[uk+1]} are defined. We will prove that:

dk[uk+1] = κ(uk+1). (15)

Let β = (1, v1, . . . , vs−1, vs, . . . , vl, uk+1) is an arbitrary (1, uk+1)-path. We denote
with s the smallest index, such that vs /∈ Uk. Then vj ∈ Uk for each j = 1, 2, . . . , s −
1. For the path β1 = (1, v1, . . . , vs−1, vs), from Property 3.1 it follows that y(β1) ≤
min{κ(vs−1), g(vs−1, vs)} ≤ dk[vs]. Therefore the inequality holds:

y(β) ≤ y(β1) ≤ dk[vs] ≤ dk[uk+1], (16)

which proves equality (15).
Since uk+1 ∈ Vk and uk ∈ Uk, then from Property 3.4 it follows that κ(uk) ≥ κ(uk+1).

This proves that Property 3.2 is fulfilled for the set Uk+1.
Now we will prove that for each v ∈ Vk+1, the following inequality is fulfilled:

κ(uk+1) ≥ κ(v). (17)

Let γ = (1, v1, . . . , vs−1, vs, vs+1, . . . , vl, v) is a path, such that y(γ) = κ(v). With s we
denote the smallest index for which vs /∈ Uk. In analogy to inequality (16) we prove that
for the path γ1 = (1, v1, . . . , vs−1, vs) it holds y(γ) ≤ y(γ1) ≤ dk[vs] ≤ dk[uk+1]. This
inequality proves (17), because dk[uk+1] = κ(uk+1) and because of the choice of γ, it holds
that y(γ) = κ(v).

The inequality (17) and the already proved Property 3.2 for the set Uk+1, prove Property
3.4 for Uk+1 and Vk+1.

The relaxation function modifies the array dk for all vertices v ∈ N.Adj[uk+1], so that
dk+1[v] = max{dk[v],min{κ(uk+1), g(uk+1)}. For the vertices that are not adjacent to uk+1,
the components of dk+1 remain unchanged.

For the array dk+1, it hods that dk[v] ≤ dk+1[v] for all v ∈ V0. Particularly, for each
u ∈ Uk+1 it holds that κ(u) = dk[u] ≤ dk+1[u] ≤ κ(u), or in other words dk+1[u] = κ(u).

We will complete the proof of Property 3.1 for dk+1 by examining the following two
cases: v ∈ Vk+1 \Xk+1 and v ∈ Vk+1 ∩Xk+1.

If v ∈ Vk+1 \ Xk+1, then v /∈
⋃

u∈Uk+1

N.Adj[u] and from the inductive assumption it

follows that dk+1[v] = dk[v] = −∞.
Now we will examine the case in which v ∈ Vk+1 ∩Xk+1.
If v /∈ N.Adj[uk+1], then from the relaxation function follows that dk+1[v] = dk[v] and

from the inductive assumption the following holds:

dk+1[v] = dk[v] = max
u∈Uk,v∈N.Adj[u]

{min{κ(u), g(u, v)}}

= max
u∈Uk+1,v∈N.Adj[u]

{min{κ(u), g(u, v)}}. (18)

If v ∈ Vk+1 ∩N.Adj[uk+1], then from relaxation function and the inductive assumption:

dk+1[v] = max

{
max

u∈Uk,v∈N.Adj[u]
{min{κ(u), g(u, v)},min{κ(uk+1), g(uk+1, v)}

}
= max

u∈Uk+1,v∈N.Adj[u]
{min{κ(u), g(u, v)}. (19)
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Let v ∈ Vk+1 ∩ Xk+1. We will prove that there exists a path α = (1, v1, . . . , vl, v),
such that y(α) = dk+1[v], the vertices of the path α1 = (1, v1, . . . , vl) belong to Uk+1 and
y(α1) = κ(vl).

Indeed, if dk+1[v] = dk[v], then the above statement follows from the inductive assump-
tion. If dk+1[v] ̸= dk[v], then dk+1[v] = min {κ(uk+1), g(uk+1, v)}. In this case, according
to the inductive assumption, there exists a path α1 = (1, v1, . . . , vl, uk+1), such that
y(α1) = dk[uk+1] = κ(uk+1) and vj ∈ Uk for each j = 1, 2, . . . , l. Then, the path
α = (1, v1, . . . , vl, uk+1, v) has capacity y(α) = min{κ(uk+1), g(uk+1, v)} = dk+1[v] and the
vertices of α1 belong to Uk+1.

With this we have proved that Property 3 holds for the sets Uk+1, Vk+1, Xk+1 and the
array dk+1 that are defined by the (k+ 1)-st iteration of the algorithm. Besides that, in the
base step of the induction we have proved that Property 3 hods for the second iteration of the
algorithm. From here we can conclude that the (n−1)-st iteration defines the corresponding
Un−1, Vn−1, Xn−1 and dn−1 for which Property 3 holds. In particular, dn−1[u] = κ(u) for
each u ∈ Un−1, and the set Vn−1 = {v} contains a single vertex. Then, for an arbitrary path
α = (1, v1, . . . , vl, v), for which vj ̸= v, and with the help of Property 3.1 we get:

y(α) ≤ min{κ(vl), g(vl, v)} ≤ dn−1[v]. (20)

The inequality (20) shows that dn−1[v] = κ(v), completing the proof of the proposition. □

We will illustrate the Algorithm 5 with the following Example 2.

Example 2 Using Algorithm 5 we will calculate the capacity array for the input network N1

with adjacency list (13) that is shown in Figure 1.
The initialization steps of the algorithm determine d0 = [∞,−∞,−∞,−∞,−∞] and

V0 = {1, 2, 3, 4, 5}, where V0 is stored in the max-priority queue Q keyed by the corresponding
values in d0. No vertices are traversed yet and both sets U0 and X0 are empty.

On the first iteration of the algorithm, the vertex u1 = 1 is extracted from Q which
now stores V1 = {2, 3, 4, 5}. The set of traversed vertices is U1 = {1}, and the corresponding
set of their neighbors is X0 = {2, 3}. The relaxation function edits the array d0 and we get
d1 = [∞, 4, 3,−∞,−∞].

The second iteration extracts the vertex u2 = 2 from the max-priority queue Q and now
it stores V2 = {3, 4, 5}. The set of the traversed vertices is U2 = {1, 2} with its corresponding
set of neighbors X2 = {2, 3, 4, 5}. In Figure 1 it is obvious that that the capacity of the
vertex 2 is κ(2) = d1[2] = 4. This is not true for the vertex 3 because κ(3) ̸= d1[3] = 3. The
relaxation function modifies the elements with indexes 3, 4 and 5 of the array d1. The result
is d2 = [∞, 4, 4, 4, 3].

The while loop of the algorithm executes two more iterations in which it calculates:

• U3 = {1, 2, 3}, V3 = {4, 5} and d3 = [∞, 4, 4, 4, 3];
• U4 = {1, 2, 3, 4}, V3 = {5} and d4 = [∞, 4, 4, 4, 4].

From the proof of Proposition 3 it follows that d4[5] = κ(5) and therefore the capacity
array is d4 = [∞, 4, 4, 4, 4].

Based on the function capacity(N.Adj), we will formulate Algorithm 6 that con-

structs the maximal capacity digraph G̃, given in Definition 6. The algorithm stores in
the digraph G̃ only those edges from the network N , that have capacity that is bigger
or equal to the capacity of the vertex n.
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Algorithm 6 Compose the adjacency list of the maximal capacity digraph G̃

1: function maxmin(N.Adj)
2: c← capacity(N.Adj)
3: for each u ∈ V do
4: for each vertex v ∈ N.Adj[u] do
5: if g(u, v) ≥ c then

6: G̃.Adj[u]← G̃.Adj[u] ∪ {v}
7: end if
8: end for
9: end for

10: return c, G̃.Adj
11: end function

On the initial step, the function maxmin(N.Adj) calculates the capacity of the
vertex n using the capacity(N.Adj) function and stores it in c. Then the algorithm
consecutively visits all the edges of N , as they are stored in the adjacency list of the
network. When the capacity of a given edge is bigger or equal to c, it is stored in the
adjacency list of G̃.

Proposition 4 The function maxmin(N.Adj) correctly constructs the maximal capacity

digraph G̃.

Proof From the proof of Proposition 3, it follows that c is the capacity of the vertex n in the
network N .

Let α is a (1, n)-path in the network N with capacity y(α) = c. Then, each edge (u, v)

in α has a capacity g(u, v) ≥ c. Therefore, α is a (1, n)-path in G̃.

Now let β is a (1, n)-path in G̃. By the definition of the adjacency list of G̃, each edge
(u, v) in β has capacity g(u, v) ≥ c, therefore y(β) ≥ c. Since c is the capacity of the vertex
n, then y(β) ≤ c and hence, y(β) = c. □

Example 3 We will calculate the maximal capacity digraph G̃1 of the input network N1 with
adjacency list (13) that is shown in Figure 1.

In Example 2 we have examined in details how the function cpacity(N.Adj) calculates the
array of capacities d = [∞, 4, 4, 4, 4] of the network N1. Particularly, in line 2 of Algorithm 6
we get that the capacity of the vertex n = 5 is c = d[5] = 4. The outer for loop will execute
four iterations – one for each vertex that has a list of outgoing neighbors in N1.Adj.

The inner for loop will include each edge with capacity bigger or equal to c = 4 into the
corresponding list in G̃1.Adj. Thus, consecutively we get the adjacency lists that construct:

G̃1.Adj = [⟨2⟩, ⟨3, 4⟩, ⟨4⟩, ⟨5⟩, ⟨∅⟩]. (21)

Figure 2 shows the maximal capacity digraph G̃1. From the representation of the graph
it is obvious that there are exactly two (1, 5)-paths: α = (1, 2, 4, 5) and β = (1, 2, 3, 4, 5). We
can verify directly that y(α) = y(β) = 4 = c.
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4 5

Fig. 2 The maximal capacity digraph G̃1 of the example network N1

Proposition 5 The computational complexity of the function maxmin(N.Adj) is O(n logn+
m).

As in the case of Proposition 2, the proof follows directly from the computational
complexity of the Dijkstra’s algorithm when the priority queue is implemented using
a Fibonacci heap [19], because the function capacity(N.Adj) follows exactly its steps.

Also, the construction of the digraph G̃ itself has computational complexity O(m).

3.3 Complete Pareto front algorithm

We will describe the general concept of Algorithm 7 that constructs the list L of all
equivalence classes Pi, given in Definition 4, using the following procedure:

1. Set Y0 = Wn, where Wn is the set of all (1, n)-paths in N .
2. Calculate the distance di = min

β∈Y0

{x(β)} and define the set of paths Xi = {α ∈ Y0 :

x(α) = di}.
3. Calculate the capacity ci = max

β∈Xi

{y(β)} and define the equivalence classes Pi =

{α ∈ X : y(α) = ci}. Store Pi into the list L.
4. Define the restricted set of paths Yi = {β ∈ Y0 : y(β) > ci}.
5. Define the set of paths Zi = Y0 \ (Yi ∪ Pi).
6. If Yi = ∅, then the procedure stops. Otherwise, set Y0 = Yi, and go to step 2.

Lemma 1 Each iteration of the above procedure defines one equivalence class Pi. After a
finite number of iterations the procedure stops and in L are stored all sets Pi that are given
in Definition 4.

Proof We will use the method of mathematical induction. We initialize the distance d0 = 0
and capacity c0 = 0, equivalence class P0 = ∅, and the set of paths Z0 = ∅, Y0 = Wn, and
the list L = ⟨∅⟩.

Base case. The base case of the induction is defined by the first iteration of the procedure
which results in:

d1 = min
β∈Y0

{x(β)}, X1 = {α ∈ Y0 : x(α) = d1},

c1 = max
β∈X1

{y(β)}, P1 = {α ∈ X1 : y(α) = c1},

L = ⟨P1⟩, Y1 = {β ∈ Y0 : y(β) > c1}, Z1 = Y0 \ (Y1 ∪ P1). (22)

We will prove that the properties given in Property 4 hold for (22) in the case in which
k = 1.
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Property 4 The following properties hold, where k is the current number of iterations
performed by the procedure.

1. Wn =
k⋃

i=1
(Zi ∪ Pi) ∪ Yk, and the sets Zi, Pi, where i = 1, 2, . . . , k, and Yk do not have

common elements.
2. P1, P2, . . . , Pk are equivalence classes, for which:
(a) di = x(α) and ci = y(α) for all α ∈ Pi, i = 1, 2, . . . k;
(b) di−1 < di and ci−1 < ci for all i = 1, 2, . . . k.

3. Each path β is dominated by each path α, β ≺ α, where β ∈ Zi and α ∈ Pi, for all
i = 1, 2, . . . k.

4. For each β ∈ Yk the inequalities ck < y(β) and dk < x(β) hold.
5. L = ⟨P1, P2, . . . , Pk⟩.

The first two properties and the last one are obvious.
We will prove Property 4.3. From the condition α ∈ P1 it follows that x(α) = d1 and

y(α) = c1, and from the condition β ∈ Z1 it follows that β /∈ Y1 and β /∈ P1. Then,
y(β) ≤ c1 = y(α) and there are possible two cases:

1. y(β) < c1 = y(α) and x(β) ≥ d1 = x(α);
2. y(β) = c1 = y(α) and x(β) > d1 = x(α), because β /∈ P1.

In both cases we have that β ≺ α.
Property 4.4 follows directly from the definitions of c1 and d1. Indeed, if β ∈ Y1, then

from the definition of Y1 it follows that y(β) > c1. Then, from the definition of c1 it follows
that x(β) ̸= d1, and therefore x(β) > d1.

If Y1 = ∅, then Wn = P1 ∪ Z1 and P1 is the equivalence class. This means that the
number of equivalence classes K = 1 in (8), and the procedure stops.

If Y1 ̸= ∅, then the constant K > 1. In this case, for each β ∈ Y1 the following inequalities
hold:

c1 < y(β) and d1 < x(β). (23)

Therefore, in this case P1 is the set of Pareto optimal paths α and it is correctly included in
the list L. In this case we set Y0 = Y1 and the procedure goes back to step 2 for its second
iteration.

Inductive step. We assume that after k ≥ 1 iterations of the procedure the sets Pi, Zi,
Yk and numbers di and ci for i = 1, 2, . . . , k are defined, for which Property 4 hods.

It is clear that if Yk = ∅, then Wn =
k⋃

i=1
(Zi ∪ Pi) and the list L is composed correctly.

We assume that Yk ̸= ∅. Then the procedure executes its (k + 1)-st iteration, which
results in:

dk+1 = min
β∈Yk

{x(β)}, Xk+1 = {α ∈ Yk : x(α) = dk+1},

ck+1 = max
β∈Xk+1

{y(β)}, Pk+1 = {α ∈ Xk+1 : y(α) = ck+1},

L = ⟨P1, P2, . . . , Pk+1⟩, Yk+1 = {β ∈ Yk : y(β) > ck+1}, Zk+1 = Yk \ (Yk+1 ∪ Pk+1). (24)

We will prove that for the sets and numbers in (24) hold properties given in Property 4. The
proof will be composed by four steps.
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Step 1. From the definitions of the sets Pk+1, Yk+1 and Zk+1 it follows that they do not
have common elements, and it is fulfilled that Yk = Zk+1∪Pk+1∪Yk+1. Taking into account

the inductive assumption Property 4.1, we get that Wn =
k+1⋃
i=1

(Zi ∪ Pi)
⋃

Yk+1.

Step 2. Let α ∈ Pk+1. Then from the definition of Pk+1 it follows that x(α) = dk+1 and
y(α) = ck+1. Since α ∈ Xk+1 ⊆ Yk, from the inductive assumption Property 4.1 it follows
ck < y(α) = ck+1 and dk < x(α) = dk+1.

Step 3. We will prove that for each β ∈ Zk+1 and α ∈ Pk+1, we have that β ≺ α. From
β ∈ Zk+1 it follows that β ∈ Yk, β /∈ Yk+1 and β /∈ Pk+1. Then, from the definition of dk+1

it follows that x(β) ≥ dk+1, and from the definition of Yk+1 it follows that y(β) ≤ ck+1. As
a result, there are exactly two possibilities for y(β):

1. y(β) < ck+1 and x(β) ≥ dk+1, or
2. y(β) = ck+1 and then x(β) > dk+1, because β /∈ Pk+1.

It is enough to note that if α ∈ Pk+1, then x(α) = dk+1 and y(α) = ck+1, hence β ≺ α.
Step 4. Let β ∈ Yk+1. We will prove that y(β) > ck+1 and x(β) > dk+1. The inequality

y(β) > ck+1 (25)

follows directly from the definition of Yk+1. Besides that, from Yk+1 ⊂ Yk it follows that
x(β) ≥ dk+1. Something more, if we assume that x(β) = dk+1, we will get a contradiction
with the inequality (25). Indeed, if x(β) = dk+1, then β ∈ Xk+1 and therefore y(β) ≤ ck+1.
The resulting contradiction proofs that:

x(β) > dk+1. (26)

The two inequalities (25) and (26) prove that if α ∈ Pk+1 and β ∈ Yk+1, then α and β
cannot be compared.

To finalize the proof, we note that in the base step of the induction we have proved
that Property 4 holds for k = 1. The inductive step proves that after each consecutive k-th
iteration, Property 4 holds. Since the elements of Wn are finite number and Pi ̸= ∅ for each
index i, then after a finite number of K iterations, the procedure stops. □

Corollary 1 For the equivalence classes Pi, it hods that

Pi = {α ∈ Wn : x(α) = di and y(α) = ci}, (27)

for each i = 1, 2, . . . ,K.

Corollary 2 For PK , the following property holds:

PK = {α ∈ X ′
1 : x(α) = d′1}, (28)

where X ′
1 = {α ∈ Wn : y(α) = max

β∈Wn

{y(β)} and d′1 = min
β∈X ′

1

{x(β)}.

Corollary 3 Let κ(n) = max
β∈Wn

{y(β)} is the capacity of the vertex n. If c1 = κ(n), then all

Pareto optimal solutions are equivalent and K = 1.

We will point out that the list L can be composed by firstly applying the Corollary
2 and separate the set PK . Then consecutively separate the sets PK−1, PK−2, etc.,
until P1 is separated.
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We will concretize the described procedure for construction of the list of all equiv-
alence classes with the function front(N.Adj) that is given in Algorithm 7. In this
algorithm, for each i = 1, 2, . . . ,K we define a special digraph Gi, such that Pi is the
list of its (1, n)-paths. The result is stored in the list L which in this representation
will contain the adjacency lists Gi.Adj of the digraphs Gi.

Apart from the functions minsum(N.Adj) and outadj(p), defined in Section 3.1,
and functions maxmin(N.Adj) and capacity(N.Adj), defined in Section 3.2, in Algo-
rithm 7 we will use the function restrict(N.Adj, c). It takes as parameters the
adjacency list of a network and a number c. The result is the adjacency list composed
by the edges (u, v) of the input network for which g(u, v) > c.

Algorithm 7 Calculate the complete Pareto front given in Problem 1

1: function front(N.Adj)
2: R.Adj ← N.Adj ▷ copy of the adjacency list to be restricted
3: c0 ← capacity(N.Adj)
4: more← true
5: while more = true do
6: d, N.Adj ← minsum(N.Adj)
7: if d =∞ then
8: more← false
9: else

10: c1, G̃.Adj ← maxmin(N.Adj)

11: L← L ∪ G̃.Adj
12: if c1 = c0 then
13: more← false
14: else
15: R.Adj ← restrict(R.Adj, c1)
16: end if
17: N.Adj ← R.Adj
18: end if
19: end while
20: return L
21: end function

The Algorithm 7 returns as result the list L, where |L| = K, and each of the
elements of the list give complete description of the sets Pi given in (8). If after the
termination of the algorithm K = 0, then (1, n)-path does not exist and the vertex n
is isolated.

We will note that, the list L allows us easily to construct a list P ′ of Pareto optimal
solutions by taking a predefined number of elements from each class Pi. Particularly,
we can compose the list P of all Pareto optimal solutions.
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Theorem 1 The function front(N.Adj) terminates after K iterations of its while loop,
where K is given in (8). Each set Pi, i = 1, 2, . . .K defined in Definition 4, is the set of all
(1, n)-paths of the sub-graph with an adjacency list given as the i-th element of the list L.

Proof From the proof of Lemma 1 it follows that to prove Theorem 1, it is enough to show
that Algorithm 7 implements the procedure that constructs the list of all equivalence classes.

Step 2 of the procedure is implemented with the function call on line 6 of the algorithm.
From the correctness of the function minsum(N.Adj), it follows that d = min

β∈Wn

{x(β)} stores

the current distance of the vertex n, and that the adjacency list N.Adj is replaced by the
adjacency list of the shortest path subnetwork N̂ .Adj, which uniquely defines the set Xi for
the i-th iteration of the procedure.

The if statement on line 7 verifies whether the network N has at least one (1, n)-path.
If d = ∞, the algorithm will terminate. Otherwise, line 10 of the algorithm calculates the
capacity c1 = max

β∈Xi

{y(β)} of the vertex n of the shortest path subnetwork. Also, the set of

all (1, n)-paths in the digraph G̃.Adj is the set Pi of all paths from Xi that have capacity c1.

That is why, on line 11 the adjacency list G̃.Adj is included in the list L. This is how step
3 of the procedure is implemented in the algorithm. Besides that, from Lemma 1 it follows
that Pi is the corresponding equivalence class from (8).

If the capacity of the shortest path subnetwork c1 is equal to the capacity c0 of the
input network N , then the algorithm stops. In this case N does not contain (1, n)-path with
capacity that is bigger than c1, the set Yi in step 4 of the procedure is the empty set, and
the procedure also terminates.

Otherwise, it means that c1 < c0. In this case the algorithm calculates the restricted
adjacency list and stores it into R.Adj. It contains the edges (u, v), for which g(i, j) > c1.
Therefore, the set Yi in step 4 of the i-th iteration of the procedure is the set of all (1, n)-paths
in R. Obviously, Yi ̸= ∅ exactly when c1 is less than the capacity of the vertex n.

On line 17 the algorithm replaces the adjacency list N.Adj with the adjacency list of the
restricted subnetwork R.Adj. Then the algorithm proceeds the next iteration. Analogously,
the procedure sets Y0 = Y1 and goes to step 2, since Yi ̸= ∅. Therefore, the while loop of
the algorithm executes the same number of iterations as the procedure. □

The proof of the Theorem 1 is illustrated with the following Example 4.

Example 4 We will trace the execution of the function front(N.Adj) for the input network
N1 that is given in (13) and Figure 1.

On the initial stage of the algorithm (lines 2 – 4) the adjacency list of the input network
is copied in a temporary adjacency list R.Adj. The network R will be recomposed on line 15
using the function restrict(R.Adj, c1) for the capacity c1 calculated on line 10. The capacity
of the destination vertex n = 5 of input network N1 is calculated c0 = 4. Also, the Boolean
variable more, that is used to control the iterations of the loop, is initialized with true.

Iteration k = 1 of the while loop in line 6 calculates the distance to vertex n = 5,
d = 6, and updates N.Adj to store the adjacency list of the shortest path subnetwork
N̂1.Adj = [⟨(2, 2, 4), (3, 5, 3)⟩, ⟨(3, 3, 5), (4, 6, 4)⟩, ⟨(4, 3, 6), (5, 1, 1)⟩, ⟨∅⟩, ⟨∅⟩]. In Example 1

we have shown that N̂1 has exactly two (1, 5)-paths α1 = (1, 3, 5) and β1 = (1, 2, 3, 5), and
both of them have the same length x(α1) = x(β1) = 6. Also, traversing the network N1, we
find that the set of all its (1, 5)-paths is:

Y0 = {(1, 2, 5), (1, 3, 5), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5), (1, 2, 3, 4, 5)}. (29)
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We can directly verify that besides α1 and β1, Y0 does not contain another (1, 5)-path with
length equal to d = 6, which follows from the correctness of the function minsum(N.Adj).
In the procedure, the set {α1, β1} is denoted with Xi for i = 1.

The if statement will terminate the algorithm if d = ∞, or in other words, the vertex n
is isolated. In this particular case the condition is not fulfilled, and the algorithm proceeds
to the body of the else statement.

On line 10 the algorithm calculates that the capacity of the terminal vertex in the current
shortest paths subnetwork subnetwork is c1 = 1 and composes the maximal capacity digraph
G̃.Adj = [⟨2, 3⟩, ⟨3, 4⟩, ⟨4, 5⟩, ⟨∅⟩, ⟨∅⟩]. It can be directly verified that G̃ contains exactly

two (1, 5)-paths: α1 = (1, 3, 5) and β1 = (1, 2, 3, 5). In this way, G̃ uniquely defines the set
P1 = {α1, β1}, and its adjacency list is stored as the first element of the list L.

If the two capacities c1 and c0 are equal, the algorithm will terminate. In this par-
ticular case, c1 = 1 < c0 = 4 and the algorithm will compose the adjacency list of
of the restricted subnetwork with edge capacities less or equal to c1 = 1: R.Adj =
[⟨(2, 2, 4), (3, 5, 3)⟩, ⟨(3, 3, 5), (4, 6, 4), (5, 5, 3)⟩, ⟨(4, 3, 6)⟩, ⟨(5, 1, 7)⟩, ⟨∅⟩].

Finally, the algorithm stores R.Adj into N.Adj and proceeds to iteration k = 2.
The calculations of the iterations k = 2 and k = 3 are given in Table 2. Note that on the

third iteration the capacity of the terminal vertex in the current shortest paths subnetwork
subnetwork is c1 = 4 and the if statement on line 12 will terminate the algorithm.

Table 2 Calculations of iterations 2 and 3 of Algorithm 7

Iteration Distance Shortest paths subnetwork Capacity Maximal capacity digraph

k = 2 d = 7
N̂.Adj = [⟨(2, 2, 4), (3, 5, 3)⟩,
⟨(3, 3, 5), (4, 6, 4), (5, 5, 3)⟩,
⟨(4, 3, 6)⟩, ⟨∅⟩, ⟨∅⟩]

c1 = 3
G̃.Adj = [⟨2, 3⟩, ⟨3, 4, 5⟩,
⟨4⟩, ⟨∅⟩, ⟨∅⟩]

k = 3 d = 9
N̂.Adj = [⟨(2, 2, 4)⟩,
⟨(3, 3, 5), (4, 6, 4)⟩,
⟨(4, 3, 6)⟩, ⟨(5, 1, 7)⟩, ⟨∅⟩]

c1 = 4
G̃.Adj = [⟨2⟩, ⟨3, 4⟩,
⟨4⟩, ⟨5⟩, ⟨∅⟩]

The above solution shows that the network N1 has exactly five Pareto optimal paths,
which are distributed in three equivalence classes: L(1) = P1 = {(1, 3, 5), (1, 2, 3, 5)}, L(2) =
P2 = {(1, 2, 5)} and L(3) = P3 = {(1, 2, 4, 5), (1, 2, 3, 4, 5)}.

Theorem 2 The computational complexity of the function front(N.Adj) is K ·O(n logn+
m), where K is the number of classes of Pareto equivalent paths.

The proof follows directly from the computational complexity of the functions
minsum(N.Adj), capacity(N.Adj) and maxmin(N.Adj). Note that on line 3 the algo-
rithm performs single call to the function capacity(N.Adj) which has complexity
O(n log n + m). From Theorem 1 we know that the while loop performs exactly K
iterations, where K is the number of classes of Pareto equivalent paths. Each iteration
involves a single call to functions minsum(N.Adj) and maxmin(N.Adj), while both
of them have complexity O(n log n+m). Besides that, the function restrict(R.Adj, c1)
has linear computational complexity O(m), because its visits each edge of the network
exactly once.
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3.4 Implementation and numerical experiments

Along with the analytical analysis of the proposed algorithms, we provide computer
implementation and we verified numerically their correctness and efficiency. The pro-
totype of the described method is implemented in Wolfram Language [21] that allows
us to take advantage of the system of symbolic computing Mathematica during the
design of algorithms. The final version1 of our software is implemented in programming
language Julia [22] because of program compactness and computational efficiency.

Table 3 Execution time of our implementation for test networks with n vertices, m edges that
result in K equivalence classes and total number of Pareto optimal solutions

Network n m K Total solutions Execution time (sec.)

N1 5 8 3 5 0.000030
N2 11 30 6 10 0.000064
N3 30 171 5 8 0.000123
N4 40 248 6 10 0.000186
N5 50 346 8 12 0.000293
N6 50 1193 18 3063 0.000813

In Table 3 we provide the execution time of our implementation of the func-
tion front(N.Adj) that constructs the complete description of the Pareto front of
the biobjective shortest path problem. The tests are conducted with input networks
with increasing number of vertices n and edges m. The number of equivalence classes
K varies in the test networks and it is an important parameter for the execution
time of the program (see Theorem 2). From the results in Table 3 it is obvious that
the algorithm implementation completes in less than 0.001 second on a standard PC
configuration, even for relatively big input networks.

4 Conclusion

In this paper we provide a detailed analysis of the biobjective shortest path problem
in a network in which the first objective function is a linear function (shortest length),
while the second objective is a bottleneck function (maximal capacity). We present
an efficient exact algorithm that discovers a complete description of the Pareto front
of the problem that has computational complexity K · O(n log n + m). We provide
detailed mathematical proofs of the correctness of the algorithms, along with detailed
numerical examples that illustrate their execution.

The two helper algorithms to compose the shortest paths subnetwork and maximal
capacity digraph, represent an efficient solutions of the corresponding single-criterion
problems for calculation of all shortest paths and all maximal capacity paths in the
network.

The result of the presented method does not only provide the complete list of all
Pareto optimal paths of the examined problem, but also fully describes the classes Pi

of equivalent Pareto optimal paths. This allows us to generate any minimal complete

1https://github.com/llaskov/Biobjective-ShortestPath-ParetoFront
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set of efficient paths for the given problem by selecting a single representative of each
of the classes Pi.
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[6] Craveirinha, J., Pascoal, M., Cĺımaco, J.: An exact approach for finding bicri-
teria maximally srlg-disjoint/shortest path pairs in telecommunication networks.
INFOR: Information Systems and Operational Research 61(3), 399–418 (2023)
https://doi.org/10.1080/03155986.2023.2228021

[7] Kaisa, M.: Nonlinear Multiobjective Optimization, 1st edn. International Series
in Operations Research & Management Science, vol. 12. Springer, Boston, USA
(1999). https://doi.org/10.1007/978-1-4615-5563-6

[8] Branke, J., Deb, K., Miettinen, K., S lowiński, R. (eds.): Multiobjective Opti-
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