
Minimum Complete Pareto Front of a Biobjective
Minimum Spanning Trees Problem

Lasko Laskov
Department of Informatics
New Bulgarian University

Sofia, Bulgaria
llaskov@nbu.bg

Marin Marinov
Department of Informatics
New Bulgarian University

Sofia, Bulgaria
mlmarinov@nbu.bg

Abstract—We propose an exact method that finds a minimum
complete Pareto front of the biobjective minimum length mini-
mum risk spanning trees problem. The method consists in two
algorithms. The first algorithm finds a single minimum length
spanning tree that has minimum risk in running time complexity
O(m + n lgn). The second algorithm calculates a minimum
complete Pareto front with an algorithm that has a pseudo-
polynomial complexity.

We present the mathematical theorems that proof the correct-
ness of both algorithms, and we show their computational com-
plexity. Also, we describe numerical experiments that illustrate
their implementation.

Index Terms—optimization in graphs, minimum spanning
trees, Pareto optimality, biobjective optimization

I. INTRODUCTION

In its standard, single-objective form the minimum spanning
tree (MST) problem is the problem of finding a single acyclic
subset of the edges of a connected, undirected, weighed graph
with a minimized total weight [1]. It is a classical problem in
field of graph algorithms and combinatorial optimization that
has numerous practical applications. Besides its obvious usage
in the design of computer, communication, telecommunication
and transportation networks [2], it is used in the solution
of other combinatorial optimization problems such as the
traveling salesman problem [3], and it plays important role
in image processing, speech recognition, pattern recognition
and clustering algorithms [4].

The single-objective MST problem can be solved in poly-
nomial running time complexity and three well-known greedy
algorithms exist: Borůvka’s algorithm (see for example [3]),
Kruskal’s algorithm [5] and Prim’s algorithm [6]. The earliest
of them, the Borůvka’s algorithm has been published in 1926,
but more recently gained attention due to the possibility of
parallel implementation [7]. We also have to mention that
the Prim’s algorithm share the same greedy principle as the
Dijkstra’s algorithm [8], and that in the latter work, besides
the single-source shortest path problem, Dijkstra proposes an
algorithm that solves the MST problem as well.

Besides the central role of the single-objective MST prob-
lem in combinatorial optimization, many problems from prac-
tice require the solution of its multi-objective and particularly,
its biobjective version. A classical example of such application

is the design of computer networks (see for example [9]).
However, the addition of an extra restriction or objective
function to the problem causes its exponential complexity
and it is reported to be NP-hard (see [10], [11], [12], [13]).
Something more, in the presence of more than one objective
function, it is not possible to find a single solution that
optimizes all of them, and we are looking for a set of non-
dominating solutions, called Pareto optimal set or Pareto front.
In this case we are not looking for a single MST but for a
whole set of MSTs.

Because of the complexity of the biobjective MSTs problem,
often in the specialized literature it is approached using
heuristic and approximation methods. In [11] authors present
a memetic algorithm that represents a genetic algorithm hy-
bridized with a tabu search procedure. In [12] a heuristic is
proposed that speeds up a k-best method and it is compared
with two branch-and-bound schemes. In [13] a metaheuristic
approach is proposed that solves biobjective spanning trees
with minimum total cost and minimum diameter problem. The
described solution is based on multi-objective evolutionary
algorithm and on a nondominated sorting genetic algorithm.

Since some applications may require exact solutions, there
are also a number of works that solve the biobjective MSTs
problem using exact methods. In [10] a two phase method is
proposed, based on an extension of the Kruskal’s algorithm
and a branch-and-bound procedure. In [14] the authors solve
the biobjective spanning trees with minimum total cost and
minimum diameter problem. The proposed approach finds the
Pareto front of the problem and is based on exact method, with
both correctness and running time verified experimentally. In
[15] is described a two-phase method that finds the complete
set of Pareto solutions. In the first phase three different strate-
gies are used, including Prim’s greedy algorithm incorporated
in a weighted sum approach. The second phase generates all
the spanning trees using a recursive method.

In this paper we propose an exact method that finds the
minimum complete Pareto front of a version of biobjective
MSTs problem with first objective function being minimum
length, and the second objective function being minimum risk.
Our method consists of two algorithms. The first algorithm,
described in Sec. III, is an extension of the Prim’s greedy
strategy and finds a single Pareto optimal spanning tree with

979-8-3503-5390-7/24/$31.00 ©2024 IEEE

minimum length and minimum risk in running time complex-
ity O(m + n lg n). It is used as an intermediate stage of
each iteration of the main algorithm, given in Sec. IV, that
constructs the minimum Pareto front in pseudo-polynomial
computational complexity.

II. PROBLEM FORMULATION

We denote the connected undirected graph G = (V,E) with
n = |V | number of vertices and m = |E| number of edges.
We assume that the set of vertices is V = {1, 2, . . . , n} and
the set of edges is E ⊆ V 2.

Two objective functions f and g are given. The function
f : E → R+ assigns to each edge (u, v) ∈ E the positive real
number f(u, v), which denotes the length of the edge (u, v).
The function g : E → R+ assigns to each edge (u, v) ∈ E
the positive real number g(u, v), which denotes the risk of the
edge (u, v).

The graph G together with the two objective functions f
and g form the network N = (V,E, f, g). In the following
algorithms the network is given by its adjacency lists repre-
sentation:

N.Adj = [⟨(v, f(u, v), g(u, v)), . . .⟩, . . .]. (1)

For each subset of edges A ⊆ E we define the numbers
x(A) (see Eq. (2)) and y(A) (see Eq. (3)).

x(A) =

k∑
i=1

f(ui, vi) (2)

y(A) = max{g(ui, vi) : i ∈ {1, 2, . . . , k}} (3)

The number x(A) denotes the length, while the number y(A)
denotes the risk of the subset of edges A.

With T we denote the set of all spanning trees of the
network N .

Definition 1: We call the tree t′ ∈ T Pareto optimal when
there does not exist another tree t ∈ T , for which any of the
following two conditions is fulfilled:

• x(t) < x(t′) and y(t) ≤ y(t′);
• x(t) ≤ x(t′) and y(t) < y(t′).
Definition 2: We will say that the tree t′ and t are equivalent

and we will denote it with t′ ∼ t, when x(t′) = x(t) and
y(t′) = y(t).

Definition 3: We will say that the tree t is dominated by the
tree t′ and we will denote it t ≺ t′, when x(t′) < x(t) and
y(t′) ≤ y(t) or x(t′) ≤ x(t) and y(t′) < y(t).

Let the set of all Pareto optimal trees in the network N is
denoted by P . Then:

P =

K⋃
i=1

Pi, (4)

where Pi denotes the classes of equivalent Pareto optimal
MSTs, and K is the number of such classes.

Definition 4: We call a minimum complete Pareto front
each set M = {t1, t2, . . . , tK}, for which ti ∈ Pi, ∀i ∈
{1, 2, . . . ,K}.

We will use the following relations in the set of edges E.
Let e1 and e2 are two arbitrary edges in the network N .

Definition 5: We will say that the edge e1 is equivalent to the
edge e2, and we will denote it e1 ∼ e2, when f(e1) = f(e2)
and g(e1) = g(e2).

Definition 6: We will say that the edge e2 is dominated by
the edge e1, and we will denote it e2 ≺ e1, when one of the
following two conditions is fulfilled:

• f(e1) < f(e2), or
• f(e1) = f(e2) and g(e1) < g(e2).
For any two arbitrary selected edges e1 and e2, exactly one

of the following three relations hold: (i) e2 ∼ e1; (ii) e2 ≺ e1;
(iii) e1 ≺ e2. Besides that, when one of the two e2 ∼ e1 or
e2 ≺ e1 is fulfilled, we will write e2 ≾ e1.

It can be easily verified that any of the relations e2 ≺ e1 or
e2 ≾ e1 establishes a linear order on the set E.

Let B ⊂ E. We call the edge e0 from B a dominant of B,
when for each edge e from B is fulfilled e ≾ e0.

We will denote the set of all dominants of the set B by
Dom{B}.

The following two properties hold.
Property 1: Each nonempty subset of E has at least one

dominant.
Property 2: If e1 ∈ Dom{B} and e2 ∈ Dom{B}, then

e1 ∼ e2.
The goal of this paper is to solve the following problem.
Problem 1 (Main problem): Given the network N , find

a minimum complete Pareto front of the biobjective MSTs
problem with first objective function being minimum length,
and the second objective function being minimum risk.

In the solution of the main problem we will use the solution
of the following helper problem.

Problem 2 (Helper problem): Given the network N , find a
single Pareto optimal spanning tree A with minimum length
and minimum risk.

III. PARETO OPTIMAL SPANNING TREE WITH MINIMUM
LENGTH AND MINIMUM RISK

In this section we will present the solution of the helper
problem (given in Problem 2). The algorithm that we describe,
in analogy to the Prim’s algorithm [6], uses an inductive
procedure to consecutively discover the edges of a Pareto
optimal spanning tree A with minimum length and minimum
risk. The procedure is implemented using a greedy-choice
property, which in our case is based on the linear order of
the edges of the network N , which is given in Sec. II.

In Algorithm 1 the tree A is represented by an n-component
vector p that stores the list of parents of the vertices of the
tree. When A = ∅, then p is a zero vector, and when an edge
(u, v) is assigned to A, the vertex u is parent of the vertex
v and p[v] = u. We will define the set of edges that we will
assign to A by traversing the set of vertices V . We denote
by Q the priority queue of vertices that are not yet traversed.
Initially, Q = V . We denote by U the set of traversed vertices.
Apparently, U = V \Q.

We define an arbitrary vertex r as the root of the tree. After
that, U = {r} and Q = V \ U . A minimum length spanning
tree with minimum risk can be constructed using the following
procedure.

Procedure 1: Inductive procedure to construct a minimum
length spanning tree with minimum risk.
I. Base step.

1) Since the number of elements of Q is finite, there exists
a vertex v1 in Q, such that

(r, v) ≾ (r, v1), for each vertex v ∈ Q. (5)

2) We update the sets Q and U by removing the vertex v1
from Q, and assigning it to U .

3) We assign the edge (r, v1) to A by storing p[v1] = r.
II. Inductive step.

1) Since the number of elements of the sets Q and U are
finite, there exist vertices v1 ∈ Q and u1 ∈ U , such that

(u, v) ≾ (u1, v1), for each u ∈ U and v ∈ Q. (6)

2) We move the vertex v1 from Q to the set U and get the
new U and Q.

3) We assign the edge (u1, v1) to A by storing p[v1] = u1.
4) If Q ̸= ∅, go to step II.1. Otherwise, stop.
After the execution of Procedure 1, the set A is a minimum

length spanning tree with minimum risk. Analogous to the
proof of the correctness of Prim’s algorithm, the correctness
of the procedure is proved here.

Theorem 1: The set A constructed by Procedure 1 is a
minimum length spanning tree with minimum risk.

The proof of Theorem 1 follows from the fact that Procedure
1 expands the set A in such way that it is a subset of a
minimum length spanning tree T with minimum risk.

The implementation of Procedure 1 by Algorithm 1 uses
the helper Boolean function BEST(a, b). It assigns to the pairs
of numbers a = (a1, a2) and b = (b1, b2) the value true if
one of the following two conditions is met: (i) a1 < b1 or (ii)
a1 = b1 and a2 < b2. When both conditions are not satisfied,
the value that is returned by the function is false.

The algorithm maintains the n-component vector d that
stores key attributes for each vertex. In the standard single-
objective Prim’s algorithm the role of a key d[v] for a given
vertex v is to denote the minimum weight that is associated
to an edge that connects v to any vertex in the tree A.
In the examined case we have two objective functions, and
each component of the vector d is composed by the pair
(f(u, v), g(u, v)), where (u, v) ∈ Dom{E1}, E1 = {(u, v) ∈
E : u ∈ U}. If there is no such edge, then E1 = ∅
and d[v] = (∞,∞). In this way, the pair stored in d[v]
characterizes the distance of the unvisited vertex v from the
set U of traversed vertices.

The min-priority queue Q is keyed by the components of
the vector d. The algorithm maintains the min-priority queue
using the functions INSERT(Q, v), EXTRACT-MIN(Q) and
DECREASE-KEY(Q,w, (x, y)). The functions INSERT(Q, u)
insets in the priority queue a vertex u. The purpose of the

Algorithm 1 Function LENTHRISK(N.Adj, r)

Input: adjacency lists N.Adj and root vertex r
Output: minimum spanning tree with minimum risk p

1: d[r]← (0, 0)
2: Q← ∅
3: for each vertex u ∈ N.V do
4: INSERT(Q, u)
5: end for
6: while Q ̸= ∅ do
7: v ← EXTRACT-MIN(Q)
8: b[v]← true
9: for i← 1 to |N.Adj[v]| do

10: (w, x, y)← N.Adj[v][i]
11: if b[w] = false and BEST((x, y), d[w]) then
12: d[w]← (x, y)
13: DECREASE-KEY(Q,w, (x, y))
14: p[w]← v
15: end if
16: end for
17: end while
18: return p

EXTRACT-MIN(Q) is to return a dominant vertex that is
currently stored in Q, and to remove it from the queue.
The function DECREASE-KEY(Q,w, (x, y)) updates the cor-
responding attribute d[w] of the vertex w with the new pair
of values (x, y), and also updates the intrinsic structure of
the priority queue. To ensure an efficient implementation of
the abstract data type min-priority queue, we adopt Fibonacci
heap [16], which guarantees that the computational complex-
ity of EXTRACT-MIN(Q) is O(lg n) and that DECREASE-
KEY(Q,w, (x, y)) has constant computational complexity.

In Algorithm 1 we will represent whether a vertex v belongs
to the set U of traversed vertices by the n-component Boolean
vector b, given in Eq. (7).

b[v] =

{
true, if v ∈ U

false, if v ∈ Q
(7)

On the initial state of Algorithm 1 the vector p is the n-
component zero vector and all components of the vector b are
set to false. The input of the algorithm are the adjacency lists
N.Adj of the network and the arbitrary selected root r of the
tree that will be constructed.

The following two theorems hold.
Theorem 2: After the termination of Algorithm 1 in the

vector p is stored a minimum length spanning tree with
minimum risk.

The proof of Theorem 2 follows directly from Theorem 1.
Theorem 3: The computational complexity of Algorithm 1

is O(m+ n lg n).
The proof of Theorem 3 follows directly from the complex-

ity of EXTRACT-MIN(Q) and DECREASE-KEY(Q,w, (x, y))
functions mentioned above, and from the complexity of the
Prim’s algorithm with min-priority queue implemented using
Fibonacci heap (see [17]).

Algorithm 2 Function MCFP(N.Adj, r)

Input: adjacency lists N.Adj and root vertex r
Output: a minimum complete Pareto front F and its corre-

sponding weights W
1: F ← ∅, W ← ∅
2: while CONNECTED(N.Adj) = true do
3: p← LENTHRISK(N.Adj, r)
4: (T, length, risk)← OPTTREE(p)
5: F ← F ∪ {T}, W ←W ∪ {(length, risk)}
6: N.Adj ← RESTRICTED(N.Adj, risk)
7: end while
8: return {F,W}

Corollary 1: Let T0 be the minimum length spanning tree
with minimum risk constructed by Algorithm 1. Then T0

is a Pareto optimal tree for the biobjective minimum length
minimum risk spanning trees problem.

Proof: Let p is the vector that stores the list of parents of
the tree T0 that is returned by Algorithm 1. From Theorem 2
it follows that for each spanning tree T the statements holds:

1) x(T0) ≤ x(T);
2) if x(T0) = x(T) then y(T0) ≤ y(T).
We assume that there exists a spanning tree T1 that dom-

inates T0. From statement 1) follows that x(T0) = x(T1).
Then, from the assumption it follows that y(T1) < y(T0),
which contradicts statement 2).

The resulting contradiction proves that there does not exist
a spanning tree that dominates T0.

IV. THE MINIMUM COMPLETE PARETO FRONT PROBLEM

In this section we will solve the main problem given
in Problem 1 using Algorithm 2. Our solution uses the
function LENTHRISK(N.Adj, r) defined in Algorithm 1 in
the previous section. The presented algorithm uses three
more functions: OPTTREE(p), CONNECTED(N.Adj) and RE-
STRICTED(N.Adj, risk).

Let p be the resulting list of parents that represents the tree
constructed by LENTHRISK(N.Adj, r). We define the helper
function OPTTREE(p) that returns the triple (T, length, risk),
where T is the set of edges of the tree stored in p, lenght =
x(T) and risk = y(T). The computational complexity of this
function is O(m).

The helper Boolean function CONNECTED(N.Adj) returns
true if the network N is connected, and returns false
otherwise. It is implemented using breadth first search of N
and therefore it has complexity O(n+m) (see [1]).

The helper function RESTRICTED(N.Adj, risk) takes as an
input the adjacency lists N.Adj and the boundary risk. It
traverses the edges of N and defines the subnetwork N1 =
(V,E1, f, g), where E1 = {(u, v) ∈ E : g(u, v) < risk}. The
computational complexity of this function is O(m).

Algorithm 2 takes as an input the adjacency lists N.Adj
and a selected vertex r that will be the root of the trees that
are going to be constructed. The result of the calculations is

stored in lists F and W . The list F stores a minimum complete
Pareto optimal front as a sequence of Pareto optimal MSTs.
For each Pareto optimal MST T ∈ F the list W stores its
corresponding weights as a (x(T), y(T)) pair.

Theorem 4: After the termination of Algorithm 2, the list F
contains a minimum complete Pareto front of the biobjective
minimum length minimum risk spanning trees problem.

The proof of Theorem 4 follows from Corollary 1 and the
correctness of the helper functions used in Algorithm 2.

Theorem 5: The computational complexity of Algorithm 2
is O(K(m + n lg n)), where K is the number of classes of
equivalent Pareto optimal MSTs.

Theorem 5 follows from the complexity of Algorithm 1 and
the fact that the while loop of the Algorithm 2 performs K
number of iterations.

The following Example 1 illustrates the execution of Algo-
rithm 2.

Example 1: We will solve the main problem formulated
in Problem 1 for the network N1 given with the following
adjacency lists:

N1.Adj = [⟨(2, 7, 10), (3, 7, 6), (4, 9, 4), (5, 15, 8)⟩,
⟨(1, 7, 10), (3, 15, 4), (4, 7, 8), (5, 9, 6)⟩,
⟨(1, 7, 6), (2, 15, 4), (4, 7, 8), (5, 9, 4)⟩,
⟨(1, 9, 4), (2, 7, 8), (3, 7, 8), (5, 9, 6)⟩,
⟨(1, 15, 8), (2, 9, 6), (3, 9, 4), (4, 9, 6)⟩].

(8)

Solution. For concreteness, let us select the vertex r = 1 as
the root of the trees that are going to be constructed.

In the first row of the algorithm the two empty lists F and
W are constructed. Then the algorithm enters the while loop
and evaluates its condition. Since the network N1 is connected,
CONNECTED(N1.Adj) returns true and the loop starts its first
iteration.

The function LENTHRISK(N.Adj, r) calculates the list of
parents of a Pareto optimal tree with minimum length and
minimum risk p = [0, 4, 1, 3, 3]. The correctness of this step
follows from Theorem 2.

The function OPTTREE(p) from p calculates the triple
(T0, length, risk), where T0 = {(4, 2), (1, 3), (3, 4), (3, 5)},
length = 30 and risk = 8. The correctness of this result
follows from the correctness of OPTTREE(p), while in this
particular case it can be verified directly.

In line 5 the tree T0 is included in the list F and its corre-
sponding weights are included in the list W and their current
state is F = ⟨{(4, 2), (1, 3), (3, 4), (3, 5)}⟩ and W = ⟨(30, 8)⟩.
Corollary 1 verifies that the included element T0 in F is a
Pareto optimal tree of the initial network N1.

After that, the function RESTRICTED(N.Adj, 8) modifies
the adjacency lists of the network which results in (9).

N ′
1.Adj = [⟨(3, 7, 6), (4, 9, 4)⟩, ⟨(3, 15, 4), (5, 9, 6)⟩,
⟨(1, 7, 6), (2, 15, 4), (5, 9, 4)⟩, ⟨(1, 9, 4), (5, 9, 6)⟩,

⟨(2, 9, 6), (3, 9, 4), (4, 9, 6)⟩].
(9)

1

2 3

5 4

(7, 10) (7, 6)

(15, 8) (9, 4)

(15, 4)

(9, 6)

(7, 8)

(7, 8)

(9, 4)

(9, 6)

(a)

1

2 3

5 4

(7, 6)

(9, 4)

(15, 4)

(9, 6)

(9, 4)

(9, 6)

(b)

1

2 3

5 4

(9, 4)

(15, 4)

(9, 4)

(c)

Fig. 1. (a) The example network N1 given in Eq. (8) with the Pareto optimal MST T0 marked in red; (b) the restricted network N ′
1 given in Eq. (9) with

the Pareto optimal MST T1 marked in blue; (c) the restricted network N ′′
1 given in Eq. (11) is not connected and stops the algorithm

The adjacency lists (9) represents the subnetwork N ′
1 that

has the same set of vertices V {1, 2, 3, 4, 5} as the network N1.
The only difference between N ′

1 and N1 is that N ′
1 contains

only these edges from N1 that have risk strictly less than 8.
Therefore, if T is a spanning tree in N1 with risk less than
8, then it is a spanning tree in the subnetwork N ′

1. And vice
versa, if T is a spanning tree in the subnetwork N ′

1 if is also
a spanning tree in the network N1.

In the condition of the while loop it is verified that the
network N ′

1 is connected and the loop proceeds to its second
iteration.

The calculations of the second iteration of the while loop
are completely analogous to the calculations of the first
iteration. The function LENTHRISK(N.Adj, r) calculates the
list of parents p′ = [0, 5, 1, 1, 3] of a Pareto optimal tree
with minimum length and minimum risk in N ′

1. The function
OPTTREE(p′) stores the discovered tree as a list of edges
T1 = {(5, 2), (1, 3), (1, 4), (3, 5)}, and calculates its length
x(T1) = 34 and risk y(T1) = 6. The correctness of these
results is established by repeating the proof from the first
iteration of the loop.

The lists F and W are updated and are given in (10).

F = ⟨T0, T1⟩,W = ⟨(30, 8), (34, 6)⟩, (10)

where
T0 = {(4, 2), (1, 3), (3, 4), (3, 5)},

T1 = {(5, 2), (1, 3), (1, 4), (3, 5)}.

The function RESTRICTED(N ′.Adj, 6) modifies the adja-
cency lists of N ′ and the result is given in Eq. (11).

N ′′
1 .Adj = [⟨(4, 9, 4)⟩, ⟨(3, 15, 4)⟩,

⟨(2, 15, 4), (5, 9, 4)⟩, ⟨(1, 9, 4)⟩, ⟨(3, 9, 4)⟩]
(11)

The condition of the while loop evaluates to false because
the network N ′′

1 is not connected, and the loop stops. Al-
gorithm 2 returns as result the two lists given in Eq. (10).

F contains a minimum Pareto front of the biobjective MSTs
problem which follows from Theorem 4. In this particular case
this can be easily verified directly.

A

B

γA

γB

A

B

x

y

30

8

34

8

40 48

10

9

8

7

6

0

Fig. 2. Minimum complete Pareto front of Example 1 with x denoting
the length and y denoting the risk. The points A and B represent the two
classes of equivalent Pareto optimal MSTs, while the black points represent
the remaining equivalent spanning trees in N . The two pairs of vertically
opposite angles γA, δA and γB , δB are given, with δA and δB containing
the corresponding dominated spanning trees.

Fig. 2 shows the numerical calculations of Example 1 and
it clearly shows that T0 and T1 cannot be compared, and all
other spanning trees are dominated by at least one of them.

V. EXPERIMENTS AND COMPUTATIONAL EFFICIENCY

We have conducted numerical experiments in order to verify
our implementations of Algorithm 1 and Algorithm 2, and also
to investigate the effectiveness of the proposed method. We
have compared our algorithms with implementations based on
brute-force generation of all spanning trees, and for relatively
small networks both approaches immediately produce identical
results. However, even for a network with n = 10 number of
vertices, the brute-force approach is not applicable any more,
because the number of spanning trees grows exponentially.

We have verified the effectiveness of our implementations
with a series of experiments with random networks with
number of vertices starting from n = 10 up to n = 102

and number of edges m = n(n − 1)/2. We will point that
Algorithm 2 shows stable behavior even for networks with
bigger n and m.

TABLE I
NUMBER OF CLASSES OF EQUIVALENT PARETO OPTIMAL MSTS K

DEPENDS ON THE NUMBER OF POSSIBLE LENGTH WEIGHTS m1 AND THE
NUMBER OF POSSIBLE RISK WEIGHTS m2

Net. size Restricted weights Varied weights
n m1 m2 K m1 m2 K
40 156 8 8 9900 4950 91
60 354 18 17 9900 4950 152
80 632 32 30 9900 4950 213
100 990 50 45 9900 4950 298

In the conducted experiments the weights of the edges are
randomly generated. The length of each edge is randomly
selected from m1 different natural numbers and the risk of
each edge is randomly selected from m2 different natural
numbers. As shown in Table I, the number of number of
classes of equivalent Pareto optimal MSTs K depends on how
restricted or varied are the sets of possible length and risk
weights.

In the restricted weights case the number of edges with
different length weights does not exceed 20% of all edges,
and the number of edges with different risk weights does not
exceed 1% of all edges. On contrary, in the case of varied
weights, the weights of the edges are selected from more than
max{n,m} different natural numbers.

The exponential grow of the examined problem is expressed
with K, and for huge networks with varied weights we
can easily modify the algorithm to restrict the number of
discovered number of classes of equivalent Pareto optimal
MSTs F0 to a predefined constant K0, reducing the running
time of the algorithm to polynomial complexity. In this case for
the constructed list F0 we have that F0 ⊆ F . Besides that, we
acquire the information whether the minimal complete Pareto
front has more than K0 − 1 elements and whether F0 = F .

VI. CONCLUSION

In this paper we propose an exact method that constructs
a minimum complete Pareto front of the biobjective MSTs
problem with first objective function being the minimum
length and the second objective function being the minimum
risk. Algorithm 2 that finds a minimum complete Pareto front
has complexity O(K(m+n lg n)), where K is the number of
classes of equivalent Pareto optimal MSTs.

The solution of the main problem is based on the solution
of the helper problem to construct a single Pareto optimal
spanning tree with minimal length and minimal risk. This
problem itself is a subject of research in the field. The
algorithm that solves it is an extension of the Prim’s algorithm
[6] that uses greedy-choice property based on the linear order
of the edges of the network that we describe in Sec. II. The
running time complexity of Algorithm 1 that solves the helper
problem is O(m+ n lg n).

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, 4th ed. MIT Press, 2022.

[2] R. L. Graham and P. Hell, “On the history of the minimum spanning
tree problem,” Annals of the History of Computing, vol. 7, no. 1, pp.
43–57, 1985.

[3] C. F. Bazlamaçcı and K. S. Hindi, “Minimum-weight spanning tree
algorithms a survey and empirical study,” Computers & Operations
Research, vol. 28, no. 8, pp. 767–785, 2001.

[4] M. Gagolewski, A. Cena, M. Bartoszuk, and Łukasz Brzozowski,
“Clustering with minimum spanning trees: How good can it be?” Journal
of Classification, vol. 41, 2024.

[5] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48–50, 1956.

[6] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[7] D. A. Bader and G. Cong, “Fast shared-memory algorithms for comput-
ing the minimum spanning forest of sparse graphs,” Journal of Parallel
and Distributed Computing, vol. 66, no. 11, pp. 1366–1378, 2006.

[8] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[9] L. Cheng, J. Niu, C. Luo, L. Shu, L. Kong, Z. Zhao, and Y. Gu, “Towards
minimum-delay and energy-efficient flooding in low-duty-cycle wireless
sensor networks,” Computer Networks, vol. 134, no. 1, pp. 66–77, 2018.

[10] R. M. Ramos, S. Alonso, J. Sicilia, and C. González, “The problem of
the optimal biobjective spanning tree,” European Journal of Operational
Research, vol. 111, no. 3, pp. 617–628, 1998.

[11] D. A. M. Rocha, E. F. G. Goldbarg, and M. C. Goldbarg, “A memetic
algorithm for the biobjective minimum spanning tree problem,” in
Evolutionary Computation in Combinatorial Optimization, J. Gottlieb
and G. R. Raidl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 222–233.

[12] S. Steiner and T. Radzik, “Computing all efficient solutions of the
biobjective minimum spanning tree problem,” Computers & Operations
Research, vol. 35, no. 1, pp. 198–211, 2008.

[13] A. C. Santos, D. R. Lima, and D. J. Aloise, “Modeling and solving the
bi-objective minimum diameter-cost spanning tree problem,” Journal of
Global Optimization, vol. 60, pp. 195–216, 2014.

[14] E. G. de Sousa, A. C. Santos, and D. J. Aloise, “An exact method for
solving the bi-objective minimum diameter-cost spanning tree problem,”
RAIRO-Oper. Res., vol. 49, no. 1, pp. 143–160, 2014.

[15] L. Amorosi and J. Puerto, “Two-phase strategies for the bi-objective
minimum spanning tree problem,” International Transactions in Oper-
ational Research, vol. 29, no. 6, pp. 3435–3463, 2022.

[16] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM,
vol. 34, no. 3, pp. 596–615, July 1987.

[17] B. Korte and J. Vygen, Spanning Trees and Arborescences. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2018, pp. 133–157.

