
Implementing a 3D model for simulations in

mechanics

Lasko Laskov

Informatics Department

New Bulgarian University

Sofia, Bulgaria

llaskov@nbu.bg

Abstract—A large category of problems that arise in physics
require an efficient and robust implementation of a three-
dimensional model that is specific and cannot be found in the
existing software systems. Such models rely on 3D geometric
objects representation to perform various simulations of different
physical phenomena.

Divers applications are based on 3D geometric objects, among
which material deformation under certain conditions, heat prop-
agation in a given environment, and as in our case, wave
propagation simulation. Of course, the variety of examples that
can be given is vast.

In this paper we present an implementation of a 3D model
as part of our solution of a 3D elastodynamic problem for wave
propagation in continuously inhomogenous half-space. The model
is optimized to serve as basis of boundary integral equation
method (BIEM), but the approach can be applied in various
applications that require 3D geometric objects representation.

Keywords—model validation and analysis, three-dimensional
modelling, numerical integration, object-oriented programming

I. INTRODUCTION

Vast variety of tasks in different fields in practice raise

the need of three-dimensional (3D) problems solutions in

physics [4]. The diversity of such problems is not a subject of

our research, but it’s worth mentioning rigid body dynamics,

harmonic motions of bodies, studying elastic properties of

materials, and many other topics that are part of a classical

course in mechanics.

3D geometric objects and shapes are a subject in various

fields in computer science as well. Some of these fields are

based on computer graphics [9], [10], and have numerous

practical applications in 3D images generation, 3D models

and animation. Gliding examples are implementation of 3D

game engines, modelling for the needs of architecture and

engineering, virtual reality.

The reverse problem in which a 3D scene is actually ana-

lyzed rather than generated, gives rise to various challenging

tasks. Many methods from image processing [7], and pattern

recognition [5] are focused on them in various state-of-the art

applications, such as aerial and satellite image analysis, motion

detection, robotics motion control, etc.

Solution of many of the problems that are subject of

research in physics, and in particular in mechanics, can involve

This work is supported by research Grant IB-RA2014-178-EnTranEmiss
from the Federal Ministry of Education Research in Germany.

the compiling of a 3D geometric model for the needs of

a computer simulation. In some of these cases the existing

software systems cannot propose a complete solution, and

special approach may be required. Exactly this is the case

of our goal to develop a software system that solves a 3D

elastodynamic problem for wave propagation in continuously

inhomogenous half-space. The main method involved in our

model is the boundary integral equation method (BIEM) [1]

[3], and the 3D geometric representation must be optimized

to serve efficiently its needs.

In this paper we present the implementation of our 3D

geometric model. Even though our approach is designed to

serve the needs of the BIEM, it can be adapted in various

other applications that involve 3D modelling for problems is

the field of mechanics.

II. GEOMETRIC MODEL

y

z

x

Fig. 1: Truncated square pyramid P located in the coordinate

system Oxyz . The top base is larger than the bottom base.

The geometry that is implemented for the purposes of

our simulation represents a 3D segment of a given environ-

ment with particular physical properties defined in Cartesian

coordinate system Oxyz . The representation of the physical

properties is described latter in Section III-A. The concrete

3D solid, which we will examine in this paper, is based on a

truncated square pyramid, denoted with P (see Fig. 1). In the

general case we will assume that the top base of P is larger

than the bottom base, so P can be viewed as if it is rotated

upside down.



(a) tσ = 3. (b) tσ = 0.333.

(c) tσ = 2. (d) tσ = 1.

Fig. 2: Example solids representative of the family generated

by different the input parameter ts of the model.

All the input parameters are flexible enough to determine

the exact shape of P , and can adjust it to fit the needs of the

different experiments that must be conducted. We can easily

modify the bases to be rectangles, instead of squares, or using

particular input values we can degenerate the truncated square

pyramid to a simple cuboid (see Fig. 2d), which by the way is

required in some of the simulations. To accomplish the needed

flexibility of the model, the following parameters are set:

• a is the size parameter that basically is used to determine

the size of the entire geometry. It represents the size of

the bottom base of P , and is used to calculate the other

parameters of the geometry by the given scale factors

below;

• hσ is the scale factor to calculate the height of P . The

actual height is then h = ahσ;

• tσ is the scale factor to calculate the top base of P . The

side of the top base is given by t = atσ .

The described simple parametric representation allows us to

define a whole family of solids, for example by just by varying

the parameter tσ as in the Fig. 2 above.

Here we must clarify that in addition to the 3D segment that

is defined by the square truncated pyramid P , we must include

a region in the plane where the top base Pt lies (see Fig. 3a).

We will denote the rectangular area around Pt with E , and

we will label it extended top. E is composed by the following

rectangular sub-areas that are placed counterclockwise around

Pt: EA, EB , EC , ED, EE , EF , EG and EH . The side of each

of them is obtained based on the side e of the whole area E ,

which is calculated again using a scale factor eσ , and it is

given by e = aeσ . Note that the definition of E is required by

the BIEM which is applied latter on the 3D model.

The square truncated pyramid P together with the extended

top E form the 3D solid P̄ that represents the segment of the

3D space used in our model, and:

P̄ = P ∪ E . (1)

(a) Dark area denotes Pt,
while light is E .

EA EB EC

EH Pt ED

EG EF EE

(b) Scheme of the top base
Pt and extended top.

Fig. 3: Extended area around the top of P .

Furthermore, each surface of P̄ , including each of the eight

sub-areas of E , must be divided in a mesh of boundary

elements (BEs), which are used in BIEM. To calculate the

location of each BE in space, each surface of P̄ is covered

with a mesh, whose intersection points determine the vertices

of the BEs. The mesh is constructed by dividing each side of

the surface equally on a number of m segments.

On Fig. 4a is given a scheme of a square-shaped surface

covered with a mesh calculated by dividing each side by m =

3 equal segments. Such surfaces can be the bottom base, the

top base Pt, and each of the extended top E sub-areas. In this

case, the boundary elements are also shaped as squares.

The lateral faces of P , however, are in the shape of

trapezoids in the general case, and the BEs formed by the

mesh on their surface are also shaped in the form of trapezoids

(see Fig. 4b).

Each separate BE (see Fig. 4c) is defined by the coordinates

of its vertices in Oxyz , and contains the coordinates of a

special point, called the nodal point s, that plays an important

role in integration step in BIEM. Note that the location of s

must be shifted from the centroid of the BE by a small offset

δ that is determined individually for each separate BE. Each

BE has also a normal vector ~n associated with it that is also

used by the BIEM algorithms.

The above definition of the BEs on the surfaces of P̄

determine the geometry that is needed for the model. P̄ is

fully defined as a set of BEs with the coordinates of their

vertices in Oxyz , nodal points and normal vectors.

III. IMPLEMENTATION

The geometric model described in Section II is a part of

our software system implemented using C++ programming

language, and built using Gnu Compiler Collection (GCC).

For visual components we are using the Qt framework [6],

while the plots of the 3D solids are implemented using the

MathGL library [12] which is a cross-platform collection of

scientific plotting routines. For numerical methods primitives,

we are adopting the Gnu Scientific Library (GSL) [8] which

consists of powerful implementation of various mathematical

routines.

The module of our software that involves the implementa-

tion of the 3D model is called Model, and is composed by



(a) Mesh on a square surface.

(b) Mesh on a trapezoid surface.

• s

~n

(c) BE with nodal point s and normal
vector ~n.

Fig. 4: Mesh dividing surfaces of P̄ to calculate BEs locations

in space. Each side of the surface is divided in equal segments,

in this case the number of segments is m = 3.

six user-defined classes, plus a special class that implements

the exceptions thrown by classes members. The graph of the

classes is given on Fig. 5, where the solid rectangles denote

user-defined classes, and rectangles in gray color denote

library classes.

Shortly, the purpose of the classes is:

• Physics – implements physical parameters of the model;

• Vector3 – algebraic concept of a vector in 3D, and is

also used to represent a point in Oxyz;

• Be – implements boundary element data type;

• Shape3 – general idea of a 3D shape used as base class

for classes implementing a particular solid;

• Pyramid – square truncated pyramid;

• Graphics3 – visual graphs of 3D solids, derived derived

from MathGL library class mglDraw;

• BiemException – a logic_exception class designed

for the needs of the components of the system.

A. Physical parameters

The geometry of the model determines two domains: the

exterior of P̄ denoted by Ω0, and the interior of P̄ denoted by

Ω1. For each of them the following physical parameters are

defined by the class Physics:

1) Lamé’s first and second parameters λ and µ are elastic

moduli which are used in mechanics to describe the

linear elasticity of an isotropic material (see for example

[11], p. 333).

Be

Shape3

Pyramid

Vector3Physics

logic_error

mglDraw Graphics3

BiemException

Fig. 5: Graph of the classes that implement the 3D model.

The gray color denotes library classes, the arrow denotes

inheritance, while diamond shows class composition.

2) Environment density ρ.

3) Primary wave vp and secondary wave vs velocities.

4) First and second wave numbers k1 and k2.

The expressions based on vp and vs are calculated and

stored by the class Physics:

vp

vs
,
vs

vp
,

(

vp

vs

)2

, and

(

vs

vp

)2

. (2)

B. BEs and flat data representation

As described in Section II, each BE is defined by the

coordinates of its four vertices in Oxyz , and stores two more

special components:

• nodal point s, that is the shifted by δ centroid of the BE

quadrilateral, where δ is determined individually for each

separate BE;

• the normal vector ~n.

The class Be stores the above components, and also provides

transformation from Oxyz coordinates to intrinsic coordinates

for the BE, partial derivatives, and the Jacobean function of

the BE in intrinsic coordinates.

The above implementation of the Be data type is the basis of

our 3D model. The class Shape3 provides the general concept

of a 3D solid as a one-dimensional sequence of BEs that

represents the discrete mesh that covers the surfaces of the

object. Note that the representation of a multi-dimensional

data in the form of a one-dimensional array is a classical

approach that is referred to as flat data or linear indexing,

and is commonly applied in many computer science tasks, for

example digital images representation (see [7], p. 70).

Shape3 stores the number of surfaces of the 3D solid, the

exact discretization of the mesh, and the flat data representa-

tion of the BEs sequence. Knowing the consecutive number

of the concrete BE in the sequence, it can restore its exact

location on the 3D solid surface. This is the approach how the



(a) BEs that comprise P̄ generated by our software.

6

5

4

3

2

1

0

7

8

9

10

11

12

13

20

19

18

17

16

15

14

(b) Fragment of flat data representation.

Fig. 6: P̄ is fully described by the set of BEs that are stored

in the form of flat data.

whole 3D model is encoded as one-dimensional array (see Fig.

6b), which subsequently is used by the algorithms of BIEM.

The exact shape of the 3D solid is determined by classes

that inhere from Shape3, an in this particular example this is

the class Pyramid that defines the square truncated pyramid,

based on the input parameters a, hσ , tσ , and eσ . For example,

the geometry generated by our software for a = 100, hσ = 2,

tσ = 5, eσ = 3, and mesh discretization m = 3 is given on

Fig. 6a. Note that the graph actually contains only the plots

of each of the BEs, that drawn together form the shape of

P̄ defined by the input parameters. Fig. 6b is a scheme that

presents a fragment of the flat data representation of P̄ as a

one-dimensional sequence of BEs, where the index of a given

BEs unambiguously defines its location on the surface of the

3D sold.

IV. CONCLUSION

The implementation of the 3D model that we present here

is optimized to serve the purposes of the boundary integral

equation method (BIEM) for solution of a 3D elastodynamic

problem for wave propagation in continuously inhomogenous

half-space. The flexibility of the presented approach comes

mainly from the flat-data representation that is based on one-

dimensional sequence of BEs, and the logical separation of

its storage from the concrete 3D solid that is implemented.

This separation is provided by the inheritance hierarchy of the

classes that comprise the implementation of the 3D geometry.

The input parameters that determine the exact 3D shape a,

hσ , tσ , and eσ , together with the discretization parameter m

that determines the number of BEs on each surface of the

solid, provide the capability of the model to run experiments

with broad family of shapes. Our implementation allows the

representation of a given solid width variety of number of

BEs, which is an important feature for BIEM algorithms: for

example a surface can be discretized in single, 4, 9, 16, and

so on, number of BEs.

Our implementation has been verified on a broad variety of

representatives of 3D solids, such as those depicted on Fig. 2,

and BIEM has been tested based on our model.

As future work, the model will be extended to broader types

3D shapes, for example to an approximation of a sphere that

is again composed by a set of BEs. Also, similar approach

can be adopted by similar systems that solve 3D problems in

physics. Another direction for improvement of our work is the

application of parallel programming.

REFERENCES

[1] BREBBIA, C. A., J. C. F. TELLES, L. WROBEL Boundary Element
Techniques: Theory and Applications in Engineering. Springer-Verlag
Berlin Heidelberg, ISBN 9783642488627, 1984.

[2] BURDEN, R. L., J. D. FAIRES Numerical Analysis. Brooks/Cole, Cen-
gage Learning, ISBN 9780538735643, 2011.

[3] CONSTANDA, C., D. DOTY, W. HAMILL Boundary Integral Equa-
tion Methods and Numerical Solutions. Developments in Mathematics,
Springer International Publishing, ISBN 978331926300, 2016, 54–62.

[4] DOURMASHKIN, P. A. Classical Mechanics: MIT 8.01 Course Notes.
Wiley Custom Learning Solutions, ISBN 1118952804, 9781118952801,
2014.

[5] DUDA, R. O., HART, E. PETER, D. G. STORK Pattern Classification,
2nd Edition. Wiley-Interscience, ISBN 9780471056690, 2000.

[6] ENG, L. Z. Qt5 C++ GUI Programming Cookbook, 2nd Edition. PACKT
Publishing, ISBN 9781789803822,178980382, 2019.

[7] GONZALEZ, R. C., R. E. WOODS Digital Image Processing, 4th Edi-
tion. Pearson, ISBN 9353062985, 9789353062989, 2018.

[8] GOUGH, B. GNU Scientific Library Reference Manual - Third Edition.
Network Theory Ltd., ISBN 0954612078, 2009.

[9] FOLEY, D. J., A. V. DAM, S. K. FEINER, J. F. HUGHES,
R. L. PHILLIPS Introduction to Computer Graphics. Addison-Wesley,
ISBN 0201609215, 9780201609219, 1994.

[10] FOLEY, D. J., A. V. DAM, S. K. FEINER, J. F. HUGHES Computer
Graphics: Principles and Practice. Addison-Wesley Professional, ISBN
0201848406, 9780201848403, 1996.

[11] SALENCON, J. Handbook of Continuum Mechanics: General Con-
cepts - Thermoelasticity Springer Science & Business Media, ISBN
3540414436, 9783540414438, 2001.

[12] BALAKIN, A.A. http://mathgl.sourceforge.net/doc en/index.html


