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Abstract. During the last decade a lot of effort has been put in studying of the 
Fourier descriptors (FD) and their application in 2D shape representation and 
matching. Often FD has been preferred to other approaches (moments, wavelet 
descriptors) because of their properties which allow their translational, scale, 
rotational and contour start-point change invariance. However, there is a lack in 
the literature of extensive theoretical proof of these properties, which can result 
in inaccuracy in the methods’ implementation. In this paper we propose a 
detailed theoretical exposition of the FDs’ invariance with special attention paid 
to the corresponding proofs. A software demonstration has been developed with 
an application to the medieval Byzantine neume notation as part of our OCR 
system. 
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1   Introduction 

Byzantine neume notation is a form of musical notation, used by the Orthodox 
Christian Church to denote music and musical forms in the sacred documents from 
the ancient times until nowadays. The variety and the number of different historical 
documents, containing neume notation is vast and they are not only a precious 
historical record, but also an important source of information and object of intense 
scientific research [10]. 

Naturally, most of the research of the neume notation in the historical documents is 
connected with the content of the documents itself, including searching for fragments 
or patterns of neumes, comparison between them, searching for similarities, etc. 
These and other technical activities are good argument in favor of creation of a 
software tool to help the research of the medieval neume notation. Such software tool 
can be an OCR (Optical Character Recognition) based system. 

In the literature there are quite few attempts described for creation of a software 
system for processing and recognition of documents containing neume notation [5], 
[1]. The both works were designed to work with the contemporary neume notation in 
printed documents. Our goal is to develop methods and algorithms for processing and 
recognition of medieval manuscripts containing Byzantine neume notation with no 



binding to a particular notation. The main stages of the processing include: (i) 
preliminary processing and segmentation, [6] and [7]; (ii) symbol agglomeration in 
classes based on unsupervised learning of the classifier; (iii) symbol recognition. 

For the goal of the unsupervised learning and recognition we need a suitable 
representation of the neumatic symbols which will be used for defining of a feature 
space which will help the comparison between the neume representatives. Since the 
neumes have relatively simple shapes and rarely contain cavities, in the proposed 
approach each neume is represented by its outer contour. For feature space definition 
the Fourier transform (FT) of the contour is used with number of high frequencies 
removed resulting in a reduced frequency contour representation. Such representation 
of 2D shapes is often called Fourier descriptors (FDs) [4], [8]. 

During the last decade FDs has been investigated in detail and applied with success 
in different problems, like OCR systems design [2], Content Based Image Retrieval 
(CBIR) [3], [4], etc. One of the main reasons FDs to be preferred to the other 
approaches for 2D shape representation, as moments and wavelet descriptors, are the 
comparatively simple methods for translation, scale, rotation and starting point 
normalization of FDs. This is the reason why in the literature a lot of effort is put in 
investigating these properties. Nevertheless, the corresponding analytical proofs are 
rarely given which can be the reason for inaccuracy and even errors in the 
implementation of the corresponding methods for linear frequency normalization of 
the contours. 
The goal of this paper is to investigate in detail the properties of FDs to achieve their 
translation, scale, rotation and start- point invariance. A special attention is paid to the 
analytical proofs of these properties and a method for construction of linearly 
normalized reduced FDs (LNRFDs) for 2D shapes representation, in particular for 
Byzantine neume notation representation. The LNRFD representation of the neume 
notation can be used effectively for the goals of the unsupervised learning. 

2   FD Representation of Byzantine Neume Notation 

For each segmented neume symbol, the algorithm for contour finding of bi-level 
images [9] is applied. The resulting contour is a closed and non-self-crossing curve. 

For our purposes we will represent the contour z as a sequence of Cartesian 
coordinates, ordered in the counterclockwise direction: 

( ) ( )( ))1,...(1,0|)(),()1,...(1,0|)( −=≡−=≡ NiiyixNiizz . (1) 

Besides, the contour is a closed curve, i.e.: 

1,0,1,=),(=)( −+ NiNiziz … . (2) 

We will also assume that z  is approximated with line segments between its 
neighboring points ( ))(),()( iyixiz = , which are equally spaced, i.e.: 

1,0,1,=,=(0)1)(=)(1)( −Δ−−−+ NizNziziz … , (3) 

where Δ  is a constant for which we can assume 1=Δ . 



     

            (a)           (b) 
Fig. 1. (a) Fragment of a neume contour, represented in the complex plane; (b) The contour 
represented as a sum of pairs of radius-vectors. The sum of the first pair gives the base ellipse 
of the neume symbol. 

2.1   Fourier Transform of a Contour 

For the sake of the FT and in correspondence with (1) we will consider the contour z  
as a complex function: 

( ) 1,,0,1,=,)(exp)()()()(=)( )( −==+ Niijizeizijyixiz ij …ϕϕ  (4) 

where x  and y  are its real and imaginary components in Cartesian representation, z  
and )arg(z=ϕ  are the respective module and phase in polar representation, and 

1−=j  is the imaginary unit (see Fig.1,a). Thus, according to (2) and (3), the 
conditions for the DFT are fulfilled: 
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where ẑ  is the spectrum of z , )(ˆ kz , )1(,...,1,0 −= Nk  are the respective harmonics, 
also called FDs, and the values || kΩ  have the sense of angular velocity. 

The Inverse DFT relates the spectrum ẑ to the contour z : 
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which after equivalent transformations can be written in the form: 
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Considered in polar coordinates, (6) and (7) lead to a useful interpretation: 



Interpretation 1. The contour z  represented as a sum of pairs of radius-vectors 
⎡ ⎤2/,)1...(2,1=,),( 22 NNNkrr kk =−−

GG , rotating with the same angular velocity kΩ , 

but in different directions: krG  in positive and the symmetric kr−
G  in negative direction, 

where )(ˆ kzrk ⇔
G  and )(ˆ)(ˆ kNzkzr k −⇔−⇔−

G  . To this vector-sum we have also the 
static CoG (Center of Gravity) vector, )0(ˆ0 zr ≡

G  as well as the residual vector 
)(ˆ 22

NzrN ≡
G  which is different from zero only if N is even (see Fig.1,b). 

Apparently the terms harmonics )(ˆ kz , descriptors )(ˆ kz , and radius-vectors krG , 
)1(,...,1,0 −= Nk  are almost identical, but express different interpretations of the 

contour spectrum ẑ . Thus, according to the Interpretation 1 each separate pair 
outlines an ellipse with a variable speed which direction depends on which of the two 
radius-vectors dominate by module. Based on this, the following practical rules can 
be derived: 

Rule 1. The base harmonics )1(ẑ  and )1(ˆ −z  cannot be zero at the same time, i.e. 
011 ≠+ −rr GG . The opposite means that the contour is traced more than once, which is 

impossible with the used algorithm for contour trace. 

Rule 2: If the direction of the contour trace is positive (counterclockwise), then 
|||| 11 −≥ rr GG , otherwise |||| 11 −≤ rr GG  (clockwise). 

For concreteness we assume that the direction of the contour trace is positive, i.e. 
|)1(ˆ||)1(ˆ| −≥ zz  that respects our case. 

An important property of FDs is that the harmonics which correspond to the low 
frequencies contain the information about the more general features of the contour, 
while the high frequencies correspond to the details. In this sense we shall give the 
following definition: 

Definition 1.  Reduced FD of length L  we will call the following spectral 
representation of the contour z : 
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for a boundary value L , ⎡ ⎤2/0 NL ≤≤ . L  and respectively the frequency LΩ  can be 
evaluated using the least-square criterion: 
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where z~ is the approximation of the contour z  which corresponds of the reduced 
frequency representation z

~
ˆ and 2

0ε  is some permissible value of the criterion 2ε . 



2.2   Linear Normalization of Contour in the Frequency Domain 

For the aims of creation of a self-learning classifier for the neume symbols a measure 
of similarity between the normalized individual representatives is needed. These 
normalizations can be relatively easily performed in the frequency domain, using the 
FDs. 

Translational normalization.  Given (6) for the translated by a vector (0)ẑ  contour 
z  we have that 
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z  according to (5). Obviously the new contour (0)ˆ)( ziz −≡ν  

coincides with the original z , but the coordinate system is translated in its CoG, i.e. 
the static harmonic of ν  is equal to zero: 0)0)(( =νF , while all others remain 
unchanged: ))(())(( kzk FF =ν , )1(,...,2,1 −= Nk . 

Hence, the transitional normalization can be achieved by (0)ˆ)(:)( ziziz −= , 
)1(,...,1,0 −= Ni , where “:=” denotes the operation assignment. 

Scale normalization.  Assume that we have the contour v  which is a version of z , 
scaled by an unknown coefficient s , i.e.: 

0,1,0,1,),(=)( ≠−= sNiisziv … . (11) 

Thus, the spectral representation of ν  will be scaled by the same coefficient. 
Really, for the forward DFT of (10), it follows from (5): 
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Therefore, the scale invariance of the contour can be achieved dividing the 
modules of its harmonics with some non-zero linear combination of them. In the case 
of the algorithm of Pavlidis [9], which we use for neume contour trace, the first 
positive or negative harmonic is different from zero, depending on the contour trace 
direction. Thus, without loss of generality we may consider the module of the first 
harmonic is non-zero, i.e. the scale invariance can be achieved by a division of all the 
harmonics by it. Thus, for the spectrum sν̂  of the scale normalized contour sν  we 
have: 
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Hence, scale normalization can be done by 1,1,2=,
|(1)ˆ|
|)(ˆ|=:)(ˆ −Nk

z
kzkz … . 



Rotational normalization.  Suppose we have the contour v  which is a version of the 
contour z , rotated to an unknown angle α . If the contours are preliminary 
normalized with respect to translation, i.e. their common CoG coincides with the 
beginning of the coordinate system, the rotation to α  corresponds to multiplication of 
the complex representation of z  with αje . 

1,0,1,=),(=)( −Niizeiv j …α  (14) 

The spectrum of the contour will be rotated by the same angle α . Indeed, because 
of the linearity of DFT, (5) and similarly to (12), for (14) we have: 
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And so, the rotation by an angle α  in the object domain corresponds to rotation by 
the same angle α  of the phases of the contour spectrum. 

Therefore, there are two approaches to provide the rotational invariance of the final 
contour representation. The first is to ignore the phases of the spectrum which leads to 
the rotationally invariant representation, but also to a big lost of information. 

The second approach is to normalize the spectrum phases by the phase of some of 
the harmonics, for example the first one (1)v̂ , for which we consider again 0(1)ˆ ≠v . 
Thus, for the spectrum αv̂  of the rotationally normalized contour αν , we have: 
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Hence, rotational normalization is: ( )( ) 1,,1,2=,
(1)ˆargexp

)(ˆ=:)(ˆ −Nk
zj

kzkz … . 

Starting point normalization.  The algorithm of Pavlidis dos not guarantee that the 
contour trace of two identical symbols will start from one and the same start-point. 
The contour start-point change can be simply examined in the frequency domain. 

Suppose we have the contour v  which is a version of the contour z  with shifted 
start-point by Δ  positions: 

1,0,1,=),(=)( −Δ+ Niiziv …  (17) 

Statement 1.  Let two contours z  and v , given in the complex plane, corresponds 
each other as (16). Then their correspondence in the frequency domain is given by: 

1,0,1,=),(ˆ=)(ˆ −ΔΩ Nkkzekv kj … . (18) 

Proof:  ♦ If 0=Δ , then the statement is obviously true. Let us suppose that 0≠Δ . 
Then, for each harmonic )(ˆ kv , 1,0,1,= −Nk …  from the spectrum of the contour v , 
according to (16) the following is true: 



( ))(exp)()exp()(exp)(1)(ˆ
1

0=

1

0=
Δ+Ω−Δ+

ΔΩ
=Ω−= ∑∑

−−

ikjiz
N

kjkiji
N

k
N

i

N

i
νν   

Using the substitution Δ+= il , we get: 
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Because of the periodicity (2) of the contours )()( Nlzlz ±=  we have: 
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But, according to (5), π2=ΩN , and hence 1)exp( =Ω− kNj . Thus, finally: 
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which we had to prove ♦. 
And so, according to the proved statement, the integer shift Δ  of the start-point of 

the contour in the object domain corresponds to multiplication of the phases of its 
spectrum by the constant )exp( ΔΩkj , or equivalently to rotations of the phases as 
follows: the k -th phase is rotated to an angle )(kδ , )1(,...,1,0,)( −=ΩΔ= Nkkkδ . 

The invariance with respect to an arbitrary change of the contour start-point  can be 
treated analogously to the rotational invariance, again in two approaches. The 
invariance in the first approach is trivial. To achieve invariance in the second 
approach, we propose the procedure: Normalize each harmonic of the spectrum v̂  
with the phase of the first non-zero harmonic 0)(ˆ ≠mv , 0)(ˆ ≠mv , as follows: 
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Then the modified spectrum Δv̂  corresponds uniquely to the all contours that are 
isomorphic to the original z  but with an arbitrary selected start-point. 

Based on these, the start-point normalization is: ( )( )mkmzj
kzkz

/)(ˆargexp
)(ˆ=:)(ˆ , 

1,...,1,= −+ Nmmk , where m  is the number of the first non-zero harmonic 0)(ˆ ≠mz  
after (1)ẑ . 



The above described normalizations give us the following definition: 

Definition 2.  We will call linearly normalized reduced FD (LNRFD) of the original 
contour z  the reduced FD of z  after its processing by (10), (13), (16) and (19). 

3   Conclusion 

In the paper we propose an approach for constructing of LNRFDs for medieval 
Byzantine neume notation, which are invariant with respect to the translation, scaling, 
rotation and change of the contour start-point. Theoretical grounds of considered 
normalizations are described in more detail. For the aims of experiment, original 
software has been developed to extract the LNRFDs of each neume segmented in a 
document. These LNRFDs play the role of index into a database of neume objects. 

The next stage of the proposed methodology for medieval neume notation 
processing and recognition will be the organization of an unsupervised learning on the 
basis of the above described LNRFD. After the database sorting through the LNRFD-
index, the problem will be reduced to a 1D clustering problem.  
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