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Cyclic Histogram Thresholding and Multithresholding ©

Dimo Dimov, and Lasko Laskov

Abstract: The paper concerns the problem of thresholding of an integer domain of 1D cyclic
histogram (periodic function) resulting in two or more consecutive regions (classes). An optimal solution is
searched for in the terms of the statistical criterion well known in the pattern recognition area as Fisher’'s LDA
(Linear Discriminant Analysis) and also successfully applied for image binarization by Otsu (1979). An
effective (quadratic complexity) extension of the Otsu’s method is also known, which segments the image by
respective thresholding of the image intensity histogram into arbitrary number of classes. We propose one
more extension of this approach for the case of the cyclic histograms. Similar problem can be brought by the
optimal segmentation of color images based on their HSV histogram, and more general in all problems which
try to approximate a given periodic function with a predefined number of Gaussians. The paper describes the
theoretical basis and the experimental evaluation of the proposed approach.

Key words: Cyclic histogram thresholding and multithresholding, Periodic function approximation by
Gaussians, Image processing.

1. INTRODUCTION

The examined problem usually is a result of so called histogram approaches to image
binarization [1, 2, 3]. The histogram that is a statistical function of the image intensity, is
being divided according to an optimality criterion into two compact parts, and during the
binarization, one of the parts is labeled as background (e.g. white), the other — as object of
interest (e.g. black). Analogously, one can binarize also color images, for example using
the corresponding Hue-histogram of the HSV color scheme of the image, but in this case
the applied histogram is a cyclic (periodic) one, [4].

More generally, if we exclude the physical meaning of the term histogram, the
considered problem can be brought by attempts to approximate a periodic function (e.g.
statistical) by a given number of simple functions, e.g. statistical distributions like
Gaussians.

Our approach to the examined problem is an extension of the classical approaches
for thresholding (and multi-level thresholding) which divide a histogram in two or more
compact sequential parts, but in the case of a cyclic histogram. As a base approach to this
extension we adopt the Otsu’s method [2].

2. BACKGROUND
For thresholding of a given histogram H(i), i=01...,(T -1) into two Gaussian

components, Otsu [2] applies an approach frequently associated with the name of Fisher
in the Linear Discriminant Analysis (LDA), see [5]. More precisely, Otsu searches a

discriminant point (a threshold) t, 0<t<T, via the criterion /Izoétw/aj\,m =max, where
con is the so called within-class variance, and o}, the between-class variance

USVth =G§ +O_12’ Gétw = 0, (4, _/uimg)z +aoy (1 _luimg)z' Here (:Uo’o-g)a (ﬂl’o-lz) and (luimglaiing
are the parameters (mean and variance) of the corresponding Gaussian models for the
object class, for the background class and for the whole image, and w,, @, o, +o, =1
play the role of normalizing coefficients.

Since the two classes are initially unknown the preliminary statistics accumulation
using Fisher's LDA would lead to an inefficient procedure. That is why, Otsu proposes an
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equwalent but more efficient in terms of calculations criterion 7= O-Btw/o-lmg Ol

,mg =cte , which is maximized by an item-by-item examination:
ty =argmaxn(t) = argmax{o, (o, (s ()~ 4 () ), (1)

0<t<T

o (t) == ZH(I) o)== ZH(I) (D)= ()ZIH() M(t)—T_Z'H(') Q= ZH(I)

This method is of compIeX|ty ~T, where in the case of gray-level images usually
T =256. The iterative extension of the method for M classes (M >2) leads to

exponential complexity ~T" ™, [2], see also [6]. But, few years before the efforts in [6], an
effective algorithm was already proposed, based on dynamic programming and having a
complexity of ~T?M , see Kurita, Otsu, and Abdelmalek [3].

3. CYCLIC THRESHOLDING IN TWO CLASSES
The approach towards the problem solution can be iterative like the proposed solution
in [2] for three (M =3) classes.

3.1. Intuitive approach towards the solution. Algorithm .A0.
We can take as a solution the couple (t,,t,) , which maximizes the criterion r =7(t|t,),

introduced for the cyclic histogram H(t)=H(({t+T), t=01,...,(T -1) by analogy with (1).
Thus, for all the possible starting points t,, t, =-101,...,(T —2), we can define the threshold
tas:t,= argmax (n(t|t,)).

to<t<T+ty, —1<ty<T-2
The following are the considerations on which the intuitive approach (A0) has been
designed in [4], on the example of the HSV scheme interpretation for a given image:
e There are two thresholds, t, and t , to separate two classes (continuous areas) in

the HS-histogram (Fig.1) resulting in a periodic H-histogram (Fig.2).

¢ Let us suppose that the histogram start-point coincides with the threshold t,. Then
we have to calculate the threshold t, to maximize the criterion 7(t|t,).

e As t, is a priori unknown we have to repeat the above procedure for each t,,
t,=-101...,(T —2), and to get as result this couple (t,,t;) which maximizes n(t|t,).

The intuitive approach A0 is implausible, for example considering the results of
binarization of sequential frames of a video-clip [7], because:

d i i . ! G g ) :
a0 100 150 200 250 300 350 400 450 a00 550 GO0 G50 FOO

.R G B (R) (G) (B) ((R))...
Fig.2. An optimal couple of thresholds (to, t1),
Fig.1. The HS color histogram of an to=110, t1=291=.4(110) that is equivalent to
image; both H-thresholds, to = 110°, to=470 = A(291)=110 mod(T), t;=651= .4(470)=291 mod(T),
and t; = 291°, are outlined. because of periodicity of the histogram H(t)=H(t+T), T=360.
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¢ In the case of smooth changes in two sequential frames, we expect that the
corresponding smooth changes will occur in the averaged intensities 1,, x as well as in

the other statistical characteristics o,, o0,, o, ,» of the two classes (object and

background). The intuitive A0 is not proved to fulfill this requirement. In contrary:

¢ The experiment with binarization of a large number of video-clips from the type
“face on blue background shot by moving camera” [7], shows obvious leaps of the
averaged intensities x, and x, of the two classes.

¢ Interpretation of the corresponding histograms: The criterion function n =7(t|t,) is

not guaranteed to be one-modal and frequently it has two (or more) well distinguishable
local maxima. For example, as the video clip advances, a given local maximum can grow
up exceeding the current global maximum. Then the position of the global maximum
catastrophically changes, reflecting in the choice of w depending on y,, see also Fig 3.
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3.2. New idea for the problem solution
Let us denote by 4 the algorithm for optimal solution t,, t, e{-1,01,...,(T —2)} of the

descried problem following (1). Let us denote by .4(t,) the extension of .4 for some initial
value t,: t, e{-101,...,(T -2)}, t, =.A(t,). Then, by considerations of symmetry it must be

also fulfilled:
t,=At)=A(A,)) mod(T), t,e{-101,...(T-2)}. (2)
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Moreover, the above must be true for each of the threshold values t, and t, of the
optimal pair (t,,t,). If we consider that t, and t, are integer values, and that t, #t,, then
we can propose the following sequence of actions to determine the optimal pair (t,,t,):

e For a given t,,t, e{-101....,(T-2)} we have: t, = A(t,), t, e{t, +t|t=12,....(T -1)}.

e From the threshold t, we calculate a new start position t,, t, = (t, +t, +1) mod(T).

e For t,, t, e{-101...(T —2)} we get the new threshold t =.A(t), t eff, +t|t=12...(T-D}.

e From t we calculate the next start position ﬁ £ = (t, + 1, +1) mod(T) .
e The new start position E must coincide with the initial one t, in the frames of

periodicity T , i.e.: t:0 =t, mod(T).
Or putted together we obtain:

A((A(t,) +t, +1)mod(T))+A(t,) +t, + 2 =t, mod(T), (3)
or equivalently:
A((t, +t, +)mod(T))+t, +2=0mod(T), t, =.A(t,). (3a)

Unlike (2), the equation (3a) requires the minimal (only single) extension (see also
Fig.2) of the base histogram H(t) to H~(t):

I:I(t):{H(t) , te{01,...,(T-1)} }

H(t-T), te{T,(T +1),...(2T -}

that has been implemented in the next algorithm A1 for the case of two classes:

(4)

3.3. Algorithm A1:
Al.step 1: Forall t,, t,=-10.1...,(T —2), find the corresponding t, = A(t,).

Al.step 2: Separate all pairs (t,,t;), for which the equation (3a) is fulfilled. The
number of the found couples is even, i.e. there exists at least two couples (t,,t;) and
(t,,t,) , which are symmetric.

Al.step 3: If the number of the found couples is greater than two, choose the couple
that maximizes the criterion function 7(t|t,) from (1). (End of A1).

The complexity of the algorithm A1 is evaluated to ~T?2.

4. CYCLIC MULTI-LEVEL THRESHOLDING
Suppose we have an algorithm B for optimal segmentation of (M +1) successive

regions (classes) of a conventional histogram H, by M, M >1 thresholds (tt,,..t,),
0<t <t, <..<t,, <T, where T defines the domain of the histogram H(t),
te{01,...,(T-1}.

Let us denote by B(t,) the extension of the algorithm B for a starting value t,,
namely: (t,t,,..t,)=B(,), t, e{-101...,(T -2)}. In this way, the base algorithm B is
represented as B(-1) . The complexity of B, is evaluated to ~(T —M)*M , see also [3].

The complexity of B(.) is similar, since it can be implemented from B by simple

readdressing of the extended H from (4), because of the H periodicity, see also Fig.2.
For the sake of concreteness of B(.), we will examine in analogy with (1) the following

extended criterion function:
n=ntw tyit|t) = O-étw (to)/o-ifng (t) (9)
where
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o-étw (t,) = Za)i (to)(,ui (t,) - Himg (to))2 )

1 b~ 1 ba
w.(to)=5§H(J), ui(to)=m§JH(J), i=012..,M; (5a)
ot = 3 (i~ iy ) A, sy (t) == 3 A, 1 =-1042,..(T-2);

T-1
Q=>"H(j), ty, =T-1.

j=0
These considerations allow the extension of the algorithm A1 to the following
algorithm A2 for periodic histogram thresholding in M +1 classes, M >1:

4.1. Algorithm A2:
A2 step 1: For each starting value t,, t,=-101...,(T —2), calculate M optimal

thresholds (t,,t,,...,.t,,) using the algorithm B(.), applied on the extended histogram I-|(t)
from (4). Place the results in an array Mot (Matrix of optimal thresholds) of size T x(M +1)
and description as follows:

row 0: (tyo tortos tosnton) +  —1=tgy <ty <ty, <. <ty <(2T -1)

row 1 (to bt tsaty) 0=t ,<t, <t,<..<t, <(@@T-1)
rowk: (t oty otoitigntiy) o K=D=t <t <t ,<..<t, <(@@T-1)

row (T -1): (tT—l,O’tT—l,litT—l,Z7""tT—1,M) , (T-2) =l o<t < <<ty y< (2T -1,
where each of the sequences (t, ot ..t 5.t 5.0t ), K=01...,(T -1) corresponds to some
concrete solution t, <t, <t, <..<t, <(2T -1), i.e. (t,,t,,..t,)=B(,), for t;,=k-1.

A2 .step 2: Extend each row (k), k=01...,(T-1) of Met to the matrix Mrot(k)
(Matrix of rotated optimal thresholds) with dimension (M +1)x(M +1), where its rows (m),
m=12,..,M, are the corresponding rows (t, ,) of Moet, chosen by the rule t .=t
t. . € Mrot(k), and after that respectively “shifted cyclically to right” with m positions:

k,m

m=0: (to) » Gr v Lo B By Biou

m=1: = tsw (ts,o) A PRI PP tS,(M—Z)’ tS,(M—l) ] S:tk,l
rPZZ: = tS,(M—l) ) ts,M ) (ts,o)a tS,l yer tS,(M—S)’ tS,(M—Z) , S :tk,z
m=M: = ts,l ) ts,z ) ts,a ) ts,4’---’ ts,M ) (ts,o) , S :tk,M

Extend Mot to Maret (Matrix of all rotated optimal thresholds), using vertical
concatenation of the corresponding matrices Mrot(k), k=01...,(T -1). The resulting
Marot :
Marot = Mrot(0) A Mrot(L) A... A Mrot(k) A...A Mrot(T -1),
is a three-dimensional matrix with size T x(M +1)x(M +1) .
A2 .step 3: Recalculate the elements of Maret according to the beginning (t=0) of
the original histogram H , considering also its cyclic recurrence H(t)=H({t+T):

Tymi StniMod(T), 0<7, . <T, i€{01..,M}, me{OL...M}, ke{OL...(T -1}
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The row content (m), m=12,....,M of a given Mrot(k), represents all possible cyclic
sequences of solutions (tg,.t,,..ts,,)=B(. ), S=t,, for a given solution
(t 1ty ooty et ) = B(t, o), recorded in the row (k), k=01...,(T 1) of Mot.

The column content (i), i=0.12,..,.M of a given Mrot(k), represents all possible
values of the i-th threshold, which can occur in the solutions (tg,,tg,,....,ts ;... ts ) =B(t, ),
S =t m=12,...,M, recorded in Mrot(k), k=01..,(T-1). Because of symmetry
reasons, for the optimal solutionk

k,m

i (1-6. one of the Mot rows), we expect that the

deviations in the columns between the thresholds (i), 1=012,..,M of the corresponding

Mrot(k,,;) to be minimal.
A2 step 4: For each one Mroi(k), k=0.1,...,(T -1) calculate the average values E,;
of the thresholds in the rows (i), i=012,...,M and recalculate (center) the elements of

Mrot(k) according to these average values:

1 M
. i i 0)1)"'1M )
M +1mzzork,m,| E{ }
of Mrot(k) represent the relative deviations of the old 7, .

from the corresponding centers E, ;.

Ak’m'i :Tk,m,i - Ek,i ' m 6{0!1!"'1 M}! Ek,i =

where the new values A

k,m,i

A2 .step 5: For each one Mrot(k), k=0\1,...,(T —=1) calculate the averaged absolute
deviations ¢, in its rows (m):

1 M
_ A, ], m=01...,M,
gk,m M +lZ():| k,m,i |

as well as the value of the possible minimum ¢, (k) = min &, . Obviously, ¢

0<m<M
The numbers ¢, (k), k=01,...,(T —1) are regarded as a measure of the closeness of
the corresponding solutions (t, ,,t, ,,....t, ...t ) = B(t, o) , recorded in Mot, to the optimal

(K)>0.

min

solution  (K,), which corresponds to the minimum &, gmin=gpkirT1(gmin(k)),
kopti = arg I’nin(‘c"min (k)) )
0<k<T

A2 .step 6: Calculate the set B from the rows numbers (k), for which the
corresponding ¢, (k) reaches the minimum ¢, . Thus, each row (k), k ek of the initial
matrix Mot (step S1), which takes part by definition in the recalculated Mrot(k) (steps

S2-+S4), can be an optimum solution candidate.
Apparently, because of considerations for symmetry, for the size of K we have that

|k|>M . Moreover: |i|=nM, n>1, n is integer, and h is divided in n classes of
equivalence k;, j=12..,n, where each of the rows (k), kek,, is obtained from one of

the others (r), re i\ k; by a cyclic shift to the left by (k—r) positions.

min *

A2 step 7: If |h|= M, for definiteness, for optimal decision we choose only one of the
rows (k), k e i, for example the one for which 7, ,, =min (see Step 3).

Otherwise, if |k|=nM, n>1, we define additionally the class k;, je{l2..,n} of
optimal solutions, using the maximum of the extended base criterion n =n(t,,,t,, ..t |t;)

from (5). Again, for definiteness, for optimal decision we choose only one of the rows (k),
k € ki;, for example the one for which 7, ,, =min. (End of A2).
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4.2. Additional explanations for the algorithm A2:

e General optimizations of the program structures for implementation of matrices
Mot, Mrot(.) and Maret. We will note that the matrices Mrot(k), k=0,,...,(T —1) can be
reduced to a single working matrix Mret with dimensions (M +1)x (M +1), which reduces
the “big” matrix Maret to the base matrix Mot .

¢ At the same time, in Step 5 the classical “least square method” can be used, which
will be a slight drawback in the terms of processing speed.

e The complexity of A2 is determined mainly by the complexity of its Step 1 and is
calculated to ~T(T —M)*M , M the number of classes, i.e. the number of cyclic thresholds.

e Apparently, for the case of two classes (M =2), it is more efficiently to use the

algorithm A1 (complexity ~T?) instead of A2 (complexity ~T?).

4. EXPERIMENTS AND RESULTS

We carried out an experimental analysis of the proposed approach through an
arbitrary picture of outdoor view (Fig.4) to assure a larger spectrum of colors most of all for
the tests of algorithm A2. The experimental software is a C++ written Windows-XP
application operating on an IBM compatible PC: Intel Pentium 4 CPU 2.8GHz, MM 2,0GB.

The results of the experiments (execution times) of the proposed algorithms are
represented in Table 1, where the discrete Hue-histogram is considered a priori calculated
for T =360 (angular degrees).

B Piot window =13
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2500
20004 ----
15004---
1000 -
5004

Fig.4. An arbitrary picture of outdoor view (left above), its Hue-histogram optimal thresholding in 8 levels (on the
right), and its segmentation in corresponding 8 color means (left down) are shown. Regularly increasing gray
intensities are used to represent the respective Hue-means, see also row (.42,M=8) in Table 1.

Table 1. Experiment results’ comparison among the algorithms A0, A1, and A2,
on the picture example of Fig.4.

Algorithm & Processing Processing

number (M) speed (S) speed per class Threshold series found (by T=360)
of classes [s] (S/IM) [s]

A0, M=2 0.007 0.003 126, 313

A1, M=2 0.006 0.003 135, 315

A2, M=2 0.656 0.328 135, 315

A2 M=3 1.062 0.354 63, 154, 305

A2 M=4 1.422 0.356 46, 93, 167, 300

A2, M=8 2.641 0.330 29, 55, 85, 123, 178, 228, 284, 349

12, 27, 39, 52, 65, 78, 93, 111, 137, 176, 205,

A2, M=16 4.562 0.285 219, 237, 262, 301, 344
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The measured times S correspond to the theoretical valuations of the algorithms:
S(A0) < O(A0) ~T?, S(A1) & O(A1)~T? and S(A2,M) < O(A2Z,M)~T(T-M)°’M,
demonstrated by the ratio S/M (column 3 of the table) that slightly diminish with M at A2.
A2 should be preferred in all cases of M > 3, while A1: for M=2. Only for M=3 classes,

experiments show that the inner B(.) of A2 is better to perform in a classical way, e.g. [6].

5. CONCLUSION

In this paper, following the Otsu’s criterion [2], a new method is proposed for optimal
thresholding and multithresholding of cyclic histograms. The method preserves the
symmetry of the solution for the expense of insignificant (in most cases) deviations from
the optimum of an intuitive iterative extension of the Otsu’s criterion, cf. [4]. The method
can be modified for other approaches for thresholding and multithresholding of histograms,
e.g. entropy approach mentioned in [1, 3].

Two algorithms are proposed, A1 and A2. A1 concerns thresholding in 2 classes
and has quadratic complexity, while A2 concerns multithresholding in more than 2 classes
and has cubic complexity (per class). This speed up is provided by dynamic programming
for the base algorithms (i.e. for the non-cyclic case) in analogy with the idea from [3].

The motivation for the proposed approach development is connected with discovering
of effective and statistically optimal method for color images segmentation based on the
HSV or HLS color schemes, which histograms become cyclic. Unlike the intuitive approach
proposed in [4], marked here as A0, the current method (A1,.A2) is optimized for color

segmentation of image sequences (video-clips). The method provides a smooth change of
the parameters of approximating Gaussians with the smooth change of the position of the
camera, which is usually connected with unwanted change of illumination, see [7].

The method is applicable in the multiple cases of discrete approximation of a function
by Gaussians and particularly when a stress is put on the symmetry (periodicity) of the
approximation. In this prospective as future work the authors intend to investigate a similar
approach based on the wavelet and Fourier analysis.

REFERENCES

[11 Sahoo, P.K., S. Soltani, A.K.C. Wong and Y.C. Chen, A survey of Thresholding
Techniques, Comp. Vision, Graphics, and Image Proc., Vol.41, pp.233-260, 1988.

[2] Otsu N.: A Threshold Selection Method from Gray-Level Historgams, IEEE Trans. on
Systems, Man, and Cybernetics, Vol.9, No.1, pp.62-66, 1979.

[3] Kurita, T., N. Otsu, and N. Abdelmalek, Maximum Likelihood Thresholding Based on
Population Mixture Models, Pattern Recognition, Vol.25, No.10, pp.1231-1240, 1992.

[4] Laskov L., and D. Dimov: Color Image Segmentation for Neume Note Recognition, In:
Proceedings of the Int.Conf. A&I'07, 03-06.10.07, Sofia, 2007, pp. I11.37-41.

[5] Duda, R.O., P.E. Hart, and D.G. Stock, Pattern Classification (2d ed.), John Wiley &
Sons, Inc., 2001.

[6] Ping-Sung Liao, Tse-Sheng Chen, and Pau-Choo Chung, A Fast Algorithm for Multilevel
Thresholding, Journal of Information Science and Engineering, Vol.17, pp.713-727, 2001.

[71 Dimov D.T., N. Zlateva, and A. Marinov: CBIR Approach to Face Recognition, In Proc. of
A&I'08 Conf., 01-04.10.2008, Sofia, Workshop on Multisensor Signal, Image and Data
Processing, 02.10.2008, pp. IV.21-26.

ABOUT THE AUTHORS

Dimo Dimov, Assoc. Prof., Ph.D., Institute of Information Technologies (IIT) at
Bulgarian Academy of Sciences (BAS), Tel: (+359 2) 870 6493, E-mail: dtdim@iinf.bas.bg

Lasko Laskov, Ph.D. Student, IIT-BAS, and Institute of Mathematics and Informatics
(IMI) at BAS, Tel: (+359 2) 979 2843, E-mail: llaskov@iinf.bas.bg

- 11.5-8-



