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Abstract: The paper concerns the problem of thresholding of an integer domain of 1D cyclic 

histogram (periodic function) resulting in two or more consecutive regions (classes). An optimal solution is 
searched for in the terms of the statistical criterion well known in the pattern recognition area as Fisher’s LDA 
(Linear Discriminant Analysis) and also successfully applied for image binarization by Otsu (1979). An 
effective (quadratic complexity) extension of the Otsu’s method is also known, which segments the image by 
respective thresholding of the image intensity histogram into arbitrary number of classes. We propose one 
more extension of this approach for the case of the cyclic histograms. Similar problem can be brought by the 
optimal segmentation of color images based on their HSV histogram, and more general in all problems which 
try to approximate a given periodic function with a predefined number of Gaussians. The paper describes the 
theoretical basis and the experimental evaluation of the proposed approach. 

 
Key words: Cyclic histogram thresholding and multithresholding, Periodic function approximation by 

Gaussians, Image processing. 
 
1. INTRODUCTION 
 The examined problem usually is a result of so called histogram approaches to image 
binarization [1, 2, 3]. The histogram that is a statistical function of the image intensity, is 
being divided according to an optimality criterion into two compact parts, and during the 
binarization, one of the parts is labeled as background (e.g. white), the other – as object of 
interest (e.g. black). Analogously, one can binarize also color images, for example using 
the corresponding Hue-histogram of the HSV color scheme of the image, but in this case 
the applied histogram is a cyclic (periodic) one, [4]. 
 More generally, if we exclude the physical meaning of the term histogram, the 
considered problem can be brought by attempts to approximate a periodic function (e.g. 
statistical) by a given number of simple functions, e.g. statistical distributions like 
Gaussians. 
 Our approach to the examined problem is an extension of the classical approaches 
for thresholding (and multi-level thresholding) which divide a histogram in two or more 
compact sequential parts, but in the case of a cyclic histogram. As a base approach to this 
extension we adopt the Otsu’s method [2]. 
  
2. BACKGROUND  
 For thresholding of a given histogram )(iH , )1(,...,1,0 −= Ti  into two Gaussian 
components, Otsu [2] applies an approach frequently associated with the name of Fisher 
in the Linear Discriminant Analysis (LDA), see [5]. More precisely, Otsu searches a 
discriminant point (a threshold) t , Tt <≤0 , via the criterion max2

Wth
2
Btw == σσλ , where 

2
Wthσ  is the so called within-class variance, and 2

Btwσ  the between-class variance 
2
1

2
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Wth σσσ += , 2

img11
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img00
2
Btw )()( μμωμμωσ −+−= . Here ),( 2

00 σμ , ),( 2
11 σμ  and ),( 2

imgimg σμ  
are the parameters (mean and variance) of the corresponding Gaussian models for the 
object class, for the background class and for the whole image, and 0ω , 1ω , 110 =+ ωω  
play the role of normalizing coefficients. 
 Since the two classes are initially unknown the preliminary statistics accumulation 
using Fisher’s LDA would lead to an inefficient procedure. That is why, Otsu proposes an 
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equivalent but more efficient in terms of calculations criterion 2
Btw

2
img

2
Btw ~ σσση = , 

cte2
img =σ , which is maximized by an item-by-item examination:  
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 This method is of complexity T~ , where in the case of gray-level images usually 
256=T . The iterative extension of the method for M  classes )2( >M  leads to 

exponential complexity 1~ −MT , [2], see also [6]. But, few years before the efforts in [6], an 
effective algorithm was already proposed, based on dynamic programming and having a 
complexity of MT 2~ , see Kurita, Otsu, and Abdelmalek [3]. 
 
3. CYCLIC THRESHOLDING IN TWO CLASSES 
 The approach towards the problem solution can be iterative like the proposed solution 
in [2] for three )3( =M  classes. 
 
3.1. Intuitive approach towards the solution. Algorithm A0 . 
 We can take as a solution the couple ),( 10 tt , which maximizes the criterion )|( 0ttηη = , 
introduced for the cyclic histogram )1(,...,1,0,)()( −=+= TtTtHtH  by analogy with (1). 
Thus, for all the possible starting points )2(,...,1,0,1, 00 −−= Ttt , we can define the threshold 

1t  as: ))|((maxarg 0
21,

1
000

ttt
TttTtt

η
−≤≤−+<<

= . 

The following are the considerations on which the intuitive approach ( A0 ) has been 
designed in [4], on the example of the HSV scheme interpretation for a given image: 

• There are two thresholds, 0t  and 1t , to separate two classes (continuous areas) in 
the HS-histogram (Fig.1) resulting in a periodic H-histogram (Fig.2). 

• Let us suppose that the histogram start-point coincides with the threshold 0t . Then 
we have to calculate the threshold 1t  to maximize the criterion )|( 0ttη . 

• As 0t  is a priori unknown we have to repeat the above procedure for each 0t ,  
)2(,...,1,0,10 −−= Tt , and to get as result this couple ),( 10 tt  which maximizes )|( 0ttη . 

The intuitive approach A0  is implausible, for example considering the results of 
binarization of sequential frames of a video-clip [7], because: 

 

 
         …R                G                B               (R)              (G)            (B)           ((R))…

Fig.2. An optimal couple of thresholds (t0, t1), 
 t0=110, t1=291= A(110) that is equivalent to 

 t0=470 = A(291)=110 mod(T), t1=651= A(470)=291 mod(T),  
 because of periodicity of the histogram H(t)=H(t+T), T=360. 

 
 

Fig.1. The HS color histogram of an 
image; both H-thresholds, t0 = 110°, 

and t1 = 291°, are outlined. 
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♦ In the case of smooth changes in two sequential frames, we expect that the 
corresponding smooth changes will occur in the averaged intensities 0μ , 1μ  as well as in 
the other statistical characteristics 0σ , 1σ , 0ω  , 1ω  of the two classes (object and 
background). The intuitive A0  is not proved to fulfill this requirement. In contrary: 

♦ The experiment with binarization of a large number of video-clips from the type 
“face on blue background shot by moving camera” [7], shows obvious leaps of the 
averaged intensities 0μ  and 1μ  of the two classes. 

♦ Interpretation of the corresponding histograms: The criterion function )|( 0ttηη =  is 
not guaranteed to be one-modal and frequently it has two (or more) well distinguishable 
local maxima. For example, as the video clip advances, a given local maximum can grow 
up exceeding the current global maximum. Then the position of the global maximum 
catastrophically changes, reflecting in the choice of 1μ depending on 0μ , see also Fig 3. 

 
3.2. New idea for the problem solution 

Let us denote by A  the algorithm for optimal solution 1t , )}2(,...,1,0,1{1 −−∈ Tt  of the 
descried problem following (1). Let us denote by )( 0tA  the extension of A  for some initial 
value 0t : )}2(,...,1,0,1{0 −−∈ Tt , )( 01 tt A= . Then, by considerations of symmetry it must be 
also fulfilled: 

 )}2(,...,1,0,1{,)mod())(()( 0010 −−∈≡≅ TtTttt AAA .            (2) 

 

 
 

Fig.3. A catastrophic jump of the 
optimal decision (t0,t1) is shown 
when the “maximum of η(t|t0)” 

criterion is used. On the right of two 
consecutive images from a video 

the respective graphics are shown − 
the H-histogram bars (each below), 
both the classes (marked artificially 

in the middles) and the η(t|t0) 
function (each above). The means μ0 
and μ1 corresponding to the found 

thresholds t0 and t1 are also shown. 

 

 

 

 
  

0μ    
0t               

1μ        1t        
         …R      G          B              (R)…

 
        

0t            
1μ   1t    

0μ        
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Moreover, the above must be true for each of the threshold values 0t  and 1t  of the 
optimal pair ),( 10 tt . If we consider that 0t  and 1t  are integer values, and that 01 tt ≠ , then 
we can propose the following sequence of actions to determine the optimal pair ),( 10 tt : 

• For a given 0t , )}2(,...,1,0,1{0 −−∈ Tt  we have: )( 01 tt A= , )}1(,...,2,1|{ 01 −=+∈ Ttttt . 
• From the threshold 1t  we calculate a new start position 0

~t , )mod()1(~
010 Tttt ++≡ . 

• For 0
~t , )}2(,...,1,0,1{~

0 −−∈ Tt  we get the new threshold )~(~
01 tt A= , )}1(,...,2,1|~{~

01 −=+∈ Ttttt . 

• From 1
~t  we calculate the next start position 0

~~t , )mod()1~~(
~~

010 Tttt ++≡ . 

• The new start position 0

~~t  must coincide with the initial one 0t  in the frames of 

periodicity T , i.e.: )mod(
~~

00 Ttt ≡ . 
Or putted together we obtain: 

( )( ) )mod(2)()mod(1)( 00000 TtttTtt ≡+++++ AAA ,             (3) 
or equivalently: 

( ) )(,)mod(02)mod()1( 01101 ttTtTtt AA =≡++++ .            (3а) 
Unlike (2), the equation (3а) requires the minimal (only single) extension (see also 

Fig.2) of the base histogram )(tH  to )(~ tH :  

⎭
⎬
⎫

⎩
⎨
⎧

−+∈−
−∈

=
)}12(),...,1(,{,)(

)}1(,...,1,0{,)(
)(~

TTTtTtH
TttH

tH ,              (4) 

that has been implemented in the next algorithm A1 for the case of two classes: 
 
3.3. Algorithm A1: 

A1 .step 1: For all 0t , )2(,...,1,0,10 −−= Tt , find the corresponding )( 01 tt A= . 
A1 .step 2: Separate all pairs ),( 10 tt , for which the equation (3а) is fulfilled. The 

number of the found couples is even, i.e. there exists at least two couples ),( 10 tt  and 
),( 01 tt , which are symmetric. 
A1 .step 3: If the number of the found couples is greater than two, choose the couple 

that maximizes the criterion function )|( 0ttη  from (1). (End of A1). 
The complexity of the algorithm A1  is evaluated to ~ 2T . 
 

4. CYCLIC MULTI-LEVEL THRESHOLDING  
Suppose we have an algorithm B  for optimal segmentation of )1( +M  successive 

regions (classes) of a conventional histogram H , by M , 1≥M  thresholds ),...,( 21 Mttt , 
Tttt M <<<<≤ ...0 21 , where T  defines the domain of the histogram )(tH , 

)}1(,...,1,0{ −∈ Tt .  
Let us denote by )( 0tB  the extension of the algorithm B  for a starting value 0t , 

namely: )}2(,...,1,0,1{),(),...,( 0021 −−∈= Tttttt M B . In this way, the base algorithm B  is 
represented as )1(−B . The complexity of B , is evaluated to ~ MMT 2)( − , see also [3]. 

The complexity of (.)B  is similar, since it can be implemented from B  by simple 
readdressing of the extended H~  from (4), because of the H  periodicity, see also Fig.2. 
 For the sake of concreteness of (.)B , we will examine in analogy with (1) the following 
extended criterion function: 
    )()()|,...,( 0

2
img0

2
Btw011 tttttt MM σσηη == − ,              (5) 

where 
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These considerations allow the extension of the algorithm A1  to the following 
algorithm A2  for periodic histogram thresholding in 1+M  classes, 1≥M : 
 
4.1. Algorithm A2 : 

A2 .step 1: For each starting value 0t , )2(,...,1,0,10 −−= Tt , calculate M  optimal 

thresholds ),...,,( 21 Mttt  using the algorithm (.)B , applied on the extended histogram )(~ tH  
from (4). Place the results in an array Mot  (Matrix of optimal thresholds) of size )1( +× MT  
and description as follows: 

    

,)12(......)2(,),...,,,(:)1( row

)12(...)1(,),...,,,,(: row

)12(...0,),...,,,,(:1  row
)12(...1,),...,,,,(:0  row

,11,10,1,12,11,10,1

,2,1,0,,3,2,1,0,
...

,12,11,10,1,13,12,11,10,1
...

,02,01,00,0,03,02,01,00,0

−<<<<<=−−

−<<<<<=−

−<<<<<=

−<<<<<=−

−−−−−−− TtttTttttT

Tttttktttttk

Tttttttttt
Tttttttttt

MTTTMTTTT

MkkkkMkkkkk

MM

MM

 

where each of the sequences ),...,,,,( ,3,2,1,0, Mkkkkk ttttt , )1(,...,1,0 −= Tk  corresponds to some 
concrete solution )12(...210 −<<<<< Ttttt M , i.e. )(),...,( 021 tttt M B= , for  10 −= kt .  

A2 .step 2: Extend each row )(k , )1(,...,1,0 −= Tk  of Mot  to the matrix )(kMrot  
(Matrix of rotated optimal thresholds) with dimension )1()1( +×+ MM , where its rows )(m , 

Mm ,...,2,1= , are the corresponding rows )( 0,mt  of Mot , chosen by the rule mkm tt ,0, = , 
)(, kt mk Mrot∈ , and after that respectively “shifted cyclically to right” with m  positions: 

  :0=m )( 0,kt    ,  1,kt    ,   2,kt  , 3,kt  ,..., )1(, −Mkt , Mkt ,  
  ------------------------------------------------------------------------------------------------------------------- 
  ⇒= :1m  MSt ,     , )( 0,St  ,  1,St   , 2,St ,..., )2(, −MSt , )1(, −MSt  , 1,ktS =  
  ⇒= :2

...
m  

...
)1(, −MSt ,  

...
,MSt   , 

...
0, )( St , 

...
1,St ,..., 

...
)3(, −MSt , 

...
)2(, −MSt  , 2,ktS =  

  ⇒= :Mm  1,St       , 2,st     , 3,St    , 4,St ,..., MSt ,     ,  )( 0,St   , MktS ,=  
Extend Mot  to Marot  (Matrix of all rotated optimal thresholds), using vertical 
concatenation of the corresponding matrices )(kMrot , )1(,...,1,0 −= Tk . The resulting 
Marot : 

)1(...)(...)1()0( −∧∧∧∧∧≡ Tk MrotMrotMrotMrotMarot ,  
is a three-dimensional matrix with size )1()1( +×+× MMT . 

A2 .step 3: Recalculate the elements of Marot  according to the beginning )0( =t  of 
the original histogram H , considering also its cyclic recurrence )()( TtHtH += :  

)}1(,...,1,0{,},...,1,0{,},...,1,0{,0,)mod( ,,,,,, −∈∈∈<≤≡ TkMmMiTTt imkimkimk ττ . 
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The row content )(m , Mm ,...,2,1=  of a given )(kMrot , represents all possible cyclic 
sequences of solutions )(),...,( ,,2,1, mkMSSS tttt B= , mktS ,= , for a given solution 

)(),...,,...,,( 0,,,2,1, kMkmkkk ttttt B= , recorded in the row )(k , )1(,...,1,0 −= Tk  of Mot . 
The column content )(i , Mi ,...,2,1,0=  of a given )(kMrot , represents all possible 

values of the i -th threshold, which can occur in the solutions )(),...,,...,,( ,,,2,1, mkMSiSSS ttttt B= , 

mktS ,= , Mm ,...,2,1= , recorded in )(kMrot , )1(,...,1,0 −= Tk . Because of symmetry 
reasons, for the optimal solution optik  (i.e. one of the Mot  rows), we expect that the 
deviations in the columns between the thresholds )(i , Mi ,...,2,1,0=  of the corresponding 

)( optikMrot  to be minimal. 
A2 .step 4: For each one )(kMrot , )1(,...,1,0 −= Tk  calculate the average values ikE ,  

of the thresholds in the rows )(i , Mi ,...,2,1,0=  and recalculate (center) the elements of 
)(kMrot  according to these average values:  

},...,1,0{,
1

1,},...,1,0{,
0

,,,,,,,, Mi
M

EMmE
M

m
imkikikimkimk ∈

+
=∈−=Δ ∑

=

ττ , 

where the new values imk ,,Δ  of )(kMrot  represent the relative deviations of the old imk ,,τ  
from the corresponding centers ikE , . 

A2 .step 5: For each one )(kMrot , )1(,...,1,0 −= Tk  calculate the averaged absolute 
deviations mk ,ε  in its rows )(m : 

Mm
M

M

i
imkmk ,...,1,0,||

1
1

0
,,, =Δ

+
= ∑

=

ε , 

as well as the value of the possible minimum mkMm
k ,0min min)( εε

≤≤
= . Obviously, 0)(min ≥kε . 

The numbers )(min kε , )1(,...,1,0 −= Tk  are regarded as a measure of the closeness of 
the corresponding solutions )(),...,,...,,( 0,,,2,1, kMkmkkk ttttt B= , recorded in Mot , to the optimal 
solution )( optik , which corresponds to the minimum minε , ( ))(min min0min k

Tk
εε

<≤
= , 

( ))(minarg min
0

opti kk
Tk

ε
<≤

= . 

A2 .step 6: Calculate the set K  from the rows numbers )(k , for which the 
corresponding )(min kε  reaches the minimum minε . Thus, each row )(k , K∈k  of the initial 
matrix Mot  (step S1), which takes part by definition in the recalculated )(kMrot  (steps 
S2÷S4), can be an optimum solution candidate.  

Apparently, because of considerations for symmetry, for the size of K  we have that 
M| ≥|K . Moreover: nM| =|K , 1≥n , n  is integer, and K  is divided in n  classes of 

equivalence jK , nj ...,2,1= , where each of the rows )(k , jk K∈ , is obtained from one of 
the others )(r , jr KK \∈  by a cyclic shift to the left by )( rk −  positions. 

A2 .step 7: If M| =|K , for definiteness, for optimal decision we choose only one of the 
rows )(k , K∈k , for example the one for which min0,0, =kτ  (see Step 3). 

Otherwise, if nM| =|K , 1>n , we define additionally the class jK , }...,2,1{ nj ∈  of 
optimal solutions, using the maximum of the extended base criterion )|,...,( 011 tttt MM −=ηη  
from (5). Again, for definiteness, for optimal decision we choose only one of the rows )(k , 

jk K∈ , for example the one for which min0,0, =kτ . (End of A2 ). 
 

II.5-6



International Conference on Computer Systems and Technologies - CompSysTech’09 

 
-           - 

 

 

4.2. Additional explanations for the algorithm A2 : 
• General optimizations of the program structures for implementation of matrices 

Mot , (.)Mrot  and Marot . We will note that the matrices )(kMrot , )1(,...,1,0 −= Tk  can be 
reduced to a single working matrix Mrot  with dimensions )1()1( +×+ MM , which reduces 
the “big” matrix Marot  to the base matrix Mot . 

• At the same time, in Step 5 the classical “least square method” can be used, which 
will be a slight drawback in the terms of processing speed. 

• The complexity of A2  is determined mainly by the complexity of its Step 1 and is 
calculated to ~ MMTT 2)( − , M the number of classes, i.e. the number of cyclic thresholds. 

• Apparently, for the case of two classes )2( =M , it is more efficiently to use the 
algorithm A1 (complexity ~ 2T ) instead of A2  (complexity ~ 3T ). 
 
4. EXPERIMENTS AND RESULTS  

We carried out an experimental analysis of the proposed approach through an 
arbitrary picture of outdoor view (Fig.4) to assure a larger spectrum of colors most of all for 
the tests of algorithm A2 . The experimental software is a C++ written Windows-XP 
application operating on an IBM compatible PC: Intel Pentium 4 CPU 2.8GHz, MM 2,0GB. 

The results of the experiments (execution times) of the proposed algorithms are 
represented in Table 1, where the discrete Hue-histogram is considered a priori calculated 
for 360=T (angular degrees). 

Fig.4. An arbitrary picture of outdoor view (left above), its Hue-histogram optimal thresholding in 8 levels (on the 
right), and its segmentation in corresponding 8 color means (left down) are shown. Regularly increasing gray 

intensities are used to represent the respective Hue-means, see also row (A2,M=8) in Table 1. 
 

Table 1. Experiment results’ comparison among the algorithms A0 , A1 , and A2 , 
on the picture example of Fig.4. 

Algorithm & 
number (M) 
of classes 

Processing 
speed (S) 

 [s] 

Processing 
speed per class 

(S/M) [s] 
Threshold series found (by T=360) 

A0 , M=2 0.007 0.003 126, 313 
A1 , M=2 0.006 0.003 135, 315 
A2 , M=2 0.656 0.328 135, 315 
A2 , M=3 1.062 0.354 63, 154, 305 
A2 , M=4 1.422 0.356 46, 93, 167, 300 
A2 , M=8 2.641 0.330 29, 55, 85, 123, 178, 228, 284, 349 

A2 , M=16 4.562 0.285 12, 27, 39, 52, 65, 78, 93, 111, 137, 176, 205, 
219, 237, 262, 301, 344 

 

 
   …     

0t    
1t       

2t        
3t             

4t           
5t             

6t                
7t  … 

              …R         G             B                (R)… 
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 The measured times S  correspond to the theoretical valuations of the algorithms: 
  2~)()( TOS A0A0 ⇔ , 2~)()( TOS A1A1 ⇔  and MMTTMOMS 2)(~),(),( −⇔ A2A2 , 
demonstrated by the ratio MS / (column 3 of the table) that slightly diminish with M at A2 . 
A2  should be preferred in all cases of 3>M , while A1: for 2=M . Only for 3=M  classes, 
experiments show that the inner (.)B  of A2  is better to perform in a classical way, e.g. [6]. 
 
5. CONCLUSION 

In this paper, following the Otsu’s criterion [2], a new method is proposed for optimal 
thresholding and multithresholding of cyclic histograms. The method preserves the 
symmetry of the solution for the expense of insignificant (in most cases) deviations from 
the optimum of an intuitive iterative extension of the Otsu’s criterion, cf. [4]. The method 
can be modified for other approaches for thresholding and multithresholding of histograms, 
e.g. entropy approach mentioned in [1, 3]. 

Two algorithms are proposed, A1 and A2 . A1 concerns thresholding in 2 classes 
and has quadratic complexity, while A2  concerns multithresholding in more than 2 classes 
and has cubic complexity (per class). This speed up is provided by dynamic programming 
for the base algorithms (i.e. for the non-cyclic case) in analogy with the idea from [3]. 

The motivation for the proposed approach development is connected with discovering 
of effective and statistically optimal method for color images segmentation based on the 
HSV or HLS color schemes, which histograms become cyclic. Unlike the intuitive approach 
proposed in [4], marked here as A0 , the current method ),( A2A1  is optimized for color 
segmentation of image sequences (video-clips). The method provides a smooth change of 
the parameters of approximating Gaussians with the smooth change of the position of the 
camera, which is usually connected with unwanted change of illumination, see [7]. 

The method is applicable in the multiple cases of discrete approximation of a function 
by Gaussians and particularly when a stress is put on the symmetry (periodicity) of the 
approximation. In this prospective as future work the authors intend to investigate a similar 
approach based on the wavelet and Fourier analysis. 
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