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Abstract. Carte du Ciel together with Astrographic Catalogue form a
19th century huge international astronomical project whose goal was to
map the stars in the visible sky as faint as 14th magnitude. The result,
in the form of astrographic plates and their paper copies – astrographic
maps, are stored and investigated in many astronomy institutes world-
wide.

The goal of our study is to develop image processing and pattern recog-
nition techniques for automatic extraction of astronomical data from the
digitized copies of the astrographic maps. In this paper we present the
design and implementation of a convolutional neural network (CNN) for
automatic classification of stars images in scanned Carte du Ciel astro-
graphic maps. We do not use any deep learning frameworks to build our
model, and we focus on the low-level implementation of the CNN. Also,
we provide comparison of our implementation with an implementation
based on PyTorch.

Keywords: Deep learning · Convolutional neural network · Astrographic
maps.

1 Introduction

Carte du Ciel was the major part, along with Astrographic Catalogue, of a vast
international project that started in 1887 and continued until 1962 in many
observatories around the world [5]. The purpose of the project was to create
a catalogue of the positions of the stars in the visible sky that are as faint as
11th magnitude. Another goal was to map the relative positions of stars of 14th
magnitude and brighter [14].

The data collected was in the form of glass photographic plates taken by the
telescopes, called astrographic plates [2]. The dimensions of the photographed
field was 2◦ × 2◦, and their location in the sky were selected in such way, so
that the corner of each plate lies at the center of its neighbor [5]. The physical
dimensions of the plates were 12cm2, and each plate contains triple exposure with
an approximate duration 20 minutes each. The reason for the triple exposure was
to be able to distinguish the images of the stars from the images of other types
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of celestial bodies and different type of noise that can result in the photographic
plates (see Fig. 1b).

The astrographic maps themself are paper copies that were produced from
the astrographic plates using photogravure on copper plates. They represent
negative image in which the background in white, and light objects, such as
stars, are in black. Each star is represented by a triple image that is called
asterism by Fresneau [2] (see Fig. 1a).

(a) (b)

Fig. 1: (a) A fragment of an astrographic map containing six asterisms, and (b)
an asterism degraded by noise.

Originally, asterisms were used to calculate the exact coordinates of the stars
in the astrographic maps. However, they can also contain important information
about the star that is represented. A significant difference in the Gaussian dis-
tributions of the three images that comprise the asterism can be considered as
a proof of an astronomical event, such as stellar explosion, or can be used to
conclude that the star is a close binary system variable. Such information can
be extremely valuable for the specialists in the field, because of the age of the
astrographic plates themself.

The legacy astronomical data is a subject of various research both towards
reduction [14], [12], and even celestial events detection [2]. More recent works
also investigate the digitalization of the Carte du Ciel data and its calibration
[9], and search for binary and multiple stars by combining data from Carte du
Ciel and Gaia catalogues [10].

The goal of our research is to develop image processing and pattern recogni-
tion methods and algorithms that will aid the automatic data extraction from
digitized Carte du Ciel astrographic maps [7]. As part of our effort, in this pa-
per we present the design and implementation of a convolutional neural network
(CNN) [8] for asterism classification in the scanned Carte du Ciel astrographic
maps.
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Even though well-known frameworks such as PyTorch and open-source li-
braries such as TensorFlow (see for example [13]) are commonly adopted in
similar researches, an important part of our study is to implement custom frame-
work for machine learning via CNN without the usage of a third-party libraries.
However, we have used a PyTorch implementation to compare the results of our
CNN implementation.

2 CNN for asterisms classification

Convolutional neural network (abbreviated CNN or ConvNet) [8] is a class of
deep neural networks that are designed to learn pattern features directly from
the training data with a contrast to the fully connected neural networks that
usually learn patterns from feature vectors that are extracted in preliminary
steps [4]. CNNs are considered appropriate for machine learning and classifica-
tion of complex data such as digital images [3] because of their ability to learn
the features that are required to classify patterns directly from the input images.

The ability of CNNs to learn and classify directly from raw images makes
them extremely appropriate for our goal to classify asterisms into a predefined
number of classes. The scanned astrographic maps in our data set are relatively
big images with width of 8750 and height of 8926 pixels. A single astrographic
map can contain by a very rough estimation approximately at least 4056 images
of asterisms that can be segmented. Note that there are also asterisms which
are degraded by various noise and coordinate system that is contained inside the
maps, or are too faint to be detected, and they are not subject of interest for the
research, because they cannot be analyzed to extract astronomical data. From
this point of view, image preprocessing algorithms applied on asterisms in order
to extract feature vectors can be quite expensive.

Apart from the above considerations, a major part of our research is focused
on the implementation of the CNN. Although our software uses traditional meth-
ods and mechanisms similar to those in well-known machine learning platforms
and libraries as PyTorch and TensorFlow [13], it does not use any external li-
braries to create the classification model. Because of the features of our data,
mentioned above, we focus on effectiveness, and for that reason our implemen-
tation uses C++ programming language, instead of commonly used systems
for technical computing such as Matlab or Mathematica, or popular scripting
languages such as Python. Something more, currently our software is able to
perform one epoch of training on a dataset of 104 normalised grayscale images,
28 × 28 pixels, tiff format, on a standard personal computer configuration in
under two minutes. With this performance and for our experiment, we did not
need to add more complexity by implementing GPU acceleration.

2.1 Proposed network structure

The CNN proposed in this paper is composed by an input, one or more convo-
lutional layers, a set of fully connected layers, and an output layer (see Fig. 2).
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Fig. 2: Topology of the CNN used in our experiment.

Our model allows different number of convolutional layers, and different number
and configuration of fully connected layers.

The input of the CNN is organized in the form of tensors that store image
values [15]. Since a tensor of order K over the field of real numbers R is denoted

T ∈ RI1×I2×...×IK , (1)

a grayscale image with resolution N ×M can be included in a tensor of second
order

I ∈ RN×M . (2)

Therefore, the tensor of order 3 that can represent the input of the CNN can be
written for L number of input images:

A ∈ RN×M×L. (3)

2.2 Convolutional layer

A convolutional layer performs spatial convolution. Convolution in the spatial
domain (image domain) is the sum of products between a digital image f and a
filter kernel ω with size n×m (see [3]):

(w ⋆ f)(x, y) =

(m−1)/2∑
s=(1−m)/2

(n−1)/2∑
t=(1−n)/2

ω(s, t)f(x− s, y − t). (4)

On Fig. 2, in the feature extraction section, the convolution is shown using the
receptive field depicted as a yellow square, where the kernel is the matrix of
weights that lies in the neighborhood defined by it. The spatial step with which
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the receptive field is moved over the image is the stride, or in other words it
determines the number of pixels the filter moves over the input matrix. A stride
value of 1 means that the filter moves over the input image one pixel at a time,
while a stride of 2 means that the filter moves over the image two pixels at a
time. CNNs use strides that are greater than one for data reduction, and is also
used in the process of subsampling or pooling that in many architectures is used
to achieve invariance to translation. In our current model there is no pooling
layer implemented because of the nature of our custom data set Carte du Ciel
Asterism 1) CDCA1 that we use to train the network (see Sec. 3).

Besides the stride, padding is used by CNN to increase the processing region
of the network. In a CNN, a kernel is a filter that moves across an image, scanning
each pixel and transforming the data into a smaller or larger format. By adding
padding to the image frame, the kernel is provided with additional space to cover
the image, which aids in the processing of the image. This allows the CNN to
analyze the image more accurately, resulting in better performance.

Our implementation allows multiple convolutional layers, however in most
of our experiments we have concluded that two convolutional layers result in
better feature extraction and higher accuracy for data that is new for the model.
Initially the layer’s filter ω is initialised with random coefficients. The convolution
process also depends on a set of predefined parameters: image dimensions, ω size
n and m, padding, stride, rate of convergence, and bias.

Image dimensions are the image height N and width M , as well as image
depth, that in our case is determined by the fact that we use grayscale images
with each pixel having an integer value in the closed interval [0, 255].

Kernel size is represented by the dimensions of ω, that are n and m, and by
filter repetition and depth.

Padding, which we denote by pad, is a single value, representing how many
pixels to add on each side of the image. It is used to prevent loss of data around
the edges or to enable the usage of larger filters.

Stride, denoted str, is also a single value, representing how much the convo-
lutional filter will move on each iteration.

Rate of convergence rconv is a decimal value, representing how quickly the
algorithm reaches a solution that we can define as an optimal regarding a given
criterion.

Bias b is a decimal value, representing the shift of the output. It is used
to shift the activation function result of each neuron in order to clear out any
potential offsets.

The convolutional layer has forward and backwards propagation leveraged
by the leaky rectified linear (Leaky ReLU) [11]:

R(z) = max (αz, z) =

{
z, if z > 0

αz, otherwise
(5)
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The first derivative of (Eq:LeakyReLU) is then:

R′(z) =


1, if z > 0

α, if z < 0

indeterminate if z = 0

(6)

The constant α determines the slope of the function for negative inputs, and
usually α = 0.01 or α = 0.2. The reason for setting the constant α is to resolve
the common problem with the “dying” neurons when the input of the standard
rectified linear activation function is a negative number, leading to a zero neuron
output.

2.3 Fully connected layer

Fig. 3: Scheme of the sigmoid neuron used to build fully connected layers of the
CNN.

Each fully connected layer l of the CNN is composed by a set of sigmoid
neurons, where the ith neuron (Fig. 3) can be represented (see for example [3]

zi(l) =

sl−1∑
j=1

wijai(l − 1) + bi(l), (7)

where sl−1 denotes the number of neurons in the previous layer, wij are the
weights, and bi(l) is the bias weight. ai(l) = h(zi(l)) defines the output or ac-
tivation value of the neuron, and in our case the activation function h is the
sigmoid function:

h(z) =
1

1 + e−z
. (8)

Our implementation supports multiple fully connected layers, and for each
layer l, it allows the definition of the number of neurons sl. The hyperparameters
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that are configurable are: number of input layers, sublayers (hidden layers),
number of output classes, bias, adam, and rate of convergence.

The input layer is a single number, representing the number of input layers,
coming out of the convolutional layer.

The sublayer is a vector, representing the topology of the fully connected
layer.

The number of output classes is a single number, representing how many
output classes are available for the specific dataset. Latter we will show that
for our experiments with the MNIST data set [1] it is set to 10, and in our
experiments with the asterisms data set, it is set to 4.

The bias is a decimal value, representing the shift of the output.
The adam hyperparameter is a boolean value, representing whether to use

Adam or SGD as optimization algorithms.
A layer l from the fully-connected section of the CNN calculates class scores

for each iteration. It uses the sigmoid activation function given in (8), and since
it is uncommon to adopt more than one activation function in a CNN, in our
approach we do not need to apply Softmax or cross-entropy loss functions (see
[4]). The result of the sigmoid activation function is directly the probability
distribution of classes in the closed interval [0, 1].

2.4 Training the model

The training of the defined model follows the standard algorithm for training of
a CNN (see for example [3] and [4]):

1. Input image data in the form of tensor A defined in (3).
2. Forward pass for each neuron in each feature map.
3. Back propagation for each neuron in each feature map.
4. Weights and bias weight update for each feature map.

A complete run through the entire data set of the above four steps defines
one epoch of training.

The training algorithm accepts the number of epochs to be performed, log-
ging options and if a validation on each epoch is necessary. During training the
parameters of the network are changed in order to get as high accuracy as pos-
sible. Validation is usually performed after each epoch with new, unseen data to
simulate the testing phase with the weights calculated after each epoch. It gives
early warning if the model performs well when faced with new, unseen data,
during the validation, the weights are not updated.

Finding the appropriate set of parameters of a neural network that can re-
duce the cost of the selected cost function that evaluates the performance is a
subject of optimization of the training stage. We have implemented two standard
optimization algorithms to optimize the process of learning: stochastic gradient
descent (SGD), and adaptive moments (Adam) [4].

The SGD algorithm is based on a selection of a relatively small set of ran-
dom samples that are used to estimate the gradient in each iteration. Then the
algorithm follows the gradient downhill.
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Adam is an adaptive learning rate optimization algorithm that estimates the
gradient based on the first-order, and uncentered second-order moments form
the selected samples.

Each epoch loops through all images one by one, forwards it through the
layers, calculates the loss, calculates the accuracy and lastly backwards the image
through the layers to update the weights.

We adopt mean squared error (MSE) loss function

MSE =
1

L

L∑
i=1

(yi − ŷi), (9)

where L is the number of input images contained in A, yi is the actual value of
the target variable for the ith image, and ŷj is the predicted value of the target
variable for the ith image. Apparently, the lower the MSE value is, the better
performance of the neural network is.

3 CDCA1 and experiment results

Table 1: Number of training epochs, training and testing accuracies in percentage
achieved with PyTorch and our CNN implementation for both datasets.

MNIST CDCA1

Epoch Train Test Epoch Train Test

PyTorch 5 95.5 95.4 5 74 74
Our library 5 88 83 5 83 73

We have tested our implementation of CNN using two different data set:

1. MNIST data set [1].
2. The first version of our custom Carte du Ciel Asterisms data set (CDCA1).

In both cases we have adopted the CNN architecture that is given in Fig. 2:

1. Two convolutional layers leveraged by the Leaky ReLU function (5).
2. Fully connected layers:

– the first fully connected layer, composed by 72 sigmoid neurons;
– the hidden layer, also composed by 72 sigmoid neurons.

3. Output layer that gives the probability for classification in each of the pre-
defined number of classes that determines the number of output neurons.

Also we have compared and verified our implementation by performing the
same experiment using an analogous CNN implemented using Python and Py-
Torch framework (see Tab. 1. The main difference between our implementation
and PyTorch based implementation is that the latter has also a pooling layer.
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Fig. 4: Train accuracy and train loss of our CNN for the MNIST data set.

We have used the MNIST data set to verify our implementation of CNN
prior to our experiments with the asterisms extracted from the Carte du Ciel
astrographic maps. The MNIST database contains images of handwritten dig-
its, so the number of output neurons in this case is 10. The dataset consists of
5 × 104 training images and 104 testing images, from these 5 × 104 we use 104

for validating after the completion of each epoch. However, it should be pointed
out that the MNIST dataset is a comprehensive dataset, carefully verified and
improved throughout the years of its existence and the images are equally dis-
tributed in the all 10 classes. Our CNN reaches 88% accuracy after 5 epoch of
training (see Fig. 4).

As expected, for the MNIST data set the PyTorch implementation performs
better than the proposed CNN implementation (see Tab. 1), and the reason for
this results is the pooling layer in the PyTorch CNN. However, the experiments
with MNIST data set are performed to verify and test the implementation of
the proposed software solution.

For the purpose of the experiments with the Carte du Ciel astrographic maps
data we have developed the first version of our data set CDCA1 (Carte du Ciel
Asterism) that contains segmented images of asterisms from the scanned data.
Initially, we have segmented manually more than 1000 asterisms to form the
base of the data set. Since this number of input images is quite insufficient to
train and test our CNN, we have developed an extra module in our software
that generates the CDCA1 by augmenting the base images using the following
operations:

– resize images to 28× 28 pixels;

– normalize images and set all images to grayscale format;

– apply geometrical transformations of rotation, horizontal and vertical flip,
and their combinations, given in Fig. 5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5: Transform the original image: (a) rotate by 90◦; (b) rotate by 180◦; (c)
rotate by 270◦; (d) horizontal flip; (e) horizontal flip and rotate by 90◦; (f)
horizontal flip and rotate by 180◦; (g) horizontal flip and rotate by 270◦; (h)
vertical flip; (i) vertical flip and rotate by 90◦; (j) vertical flip and rotate by
180◦.

In this way, the resulting CDCA1 dataset consists of more than 14000 asterism
images.

(a) C1 (b) C2 (c) C3 (d) C4

Fig. 6: The four classes of asterisms in which the CNN classifies data in CDCA1.

We define four classes of asterisms in the dataset CDCA1 (their representa-
tives are given in Fig. 6):

– class C1 represents asterisms of bright stars whose three images are merged
together in a single connected component;

– class C2 represents the most common case of asterisms composed by three
stars images that have relatively equal Gaussian distributions;

– class C3 represents asterisms composed by two bright and one fainter image;
– class C4 represents asterisms composed by two faint and one brighter image.

The CNN achieves 83% accuracy on the CDCA1 dataset after 5 epochs of
training (see Fig. 8). During the testing phase, the accuracy reaches 74%. The



Implementation of a CNN for Asterism Classification. . . 11

(a) (b) (c)

Fig. 7: Asterism image heatmap: (a) input of the CNN; (b) after the first convo-
lutional layer; (c) after the second convolutional layer.

lower testing accuracy is normal in this case because a single epoch is performed,
and the testing data is unknown for the CNN. The result of the convolutional
layers is illustrated on Fig. 7, where are given the heatmaps: of the input of
the CNN; after the first convolutional layer; and after the second convolutional
layer.

Fig. 8: Train accuracy and train loss of our CNN for the proposed CDCA1 data
set.

As it can be seen from the results in Tab. 1 the performance of the PyTorch
implementation and our CNN implementation are extremely close, even though
our implementation does not provide a pooling layer. As mentioned above, it can
be explained by the nature of the CDCA1 data set, and also by the geometrical
distortions that we have applied in order to augment artificially the data set.
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4 Conclusion

In this paper we present our implementation of a convolutional neural network
(CNN) whose purpose is the automatic classification of asterisms in digitized
Carte du Ciel astrographic maps. Our implementation is written in the C++
programming language, and the CNN is implemented without any use of third-
party library. The software is tested and verified using the popular MNIST
dataset. In order to perform our experiments on the astrographic maps data,
we have created our custom CDCA1 dataset, that is composed by manually seg-
mented asterisms, and is augmented using geometrical transformations in order
to achieve a number of images that is sufficient to train and test CNN.

The results on CDCA1 show 83% accuracy after 5 epochs of training and 73%
accuracy in the testing phase. The lower accuracy during the testing phase can
be explained with overfitting that occurs when the model becomes too close to
the data point of the training section of the data set. It is a natural result of the
augmentation that is used to generate CDCA1. However, these results clearly
show that the selected approach is appropriate for the automatic classification
of asterisms in the examined data.

As future work, we will implement an option to add a pooling layer to the
topology of our CNN. We will also integrate our CNN model with a software
for automatic asterisms segmentation from Carte du Ciel astrographic maps [7],
which currently is under process of development. The latter will also result in
the second version of our dataset CDCA2 that will not involve artificial aug-
mentation, and will contain unique segmented asterisms images. The latter will
allow us to perform additional experiments for fine tuning of the CNN hyperpa-
rameters.
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