
Pareto Optimal Solutions of the Minimal Cost
Minimal Time Assignment Problem

Lasko Laskov
Department of Informatics
New Bulgarian University

Sofia, Bulgaria
llaskov@nbu.bg

Marin Marinov
Department of Informatics
New Bulgarian University

Sofia, Bulgaria
mlmarinov@nbu.bg

Abstract—We propose an exact algorithm for calculation of a
list of all Pareto optimal solutions of a biobjective assignment
problem (AP) with a linear objective function (representing a
cost criterion) and a non-linear bottleneck objective function
(representing a time criterion). The method, along with all needed
helper functions for its implementation, is described in details.

We provide comprehensive examples that illustrate the results,
and a graphical illustration of the presented algorithm that also
gives a geometrical proof of the method.

The correctness of the algorithms is proved, and their compu-
tational complexity is shown. The presented algorithms can be
adopted to solve the other standard biobjective AP with the first
function being a linear one, and the second function being from
the bottleneck type.

Index Terms—combinatorial optimization, assignment prob-
lem, Pareto optimality, biobjective optimization

I. INTRODUCTION

The assignment problem (AP) [1] is a fundamental subject
in combinatorial optimization and operations research. It has
been investigated since the 1950s [2] until nowadays [3]–[5].

Many practical problems are modeled based on two objec-
tive functions to form a biobjective (or bicriteria) AP (see for
example [6], [7]). If the two functions are conflicting [3], this
means that it cannot be found a solution that improves either
one of the criteria, without making worse the other criterion.
In this case we are interested to find the set of non-dominant
solutions that are also called Pareto optimal [6], [8], [9].

[8] is a key publication that investigates the topic of Pareto
optimal solutions in networks that have two objective functions
defined: a linear, and a bottleneck objective function. The
authors present their methods as more or less universal, by
pointing out that they solve the shortest path problem, the AP,
and the minimum spanning tree problem. The authors propose
three algorithms in which an important stage is the sorting of
the edges with respect to the bottleneck criterion.

The problem of biobjective and multiobjective optimization
is a current topic of research in the last two decades. Partic-
ularly the problem of Pareto optimal solutions, performance
of the algorithms that search for them, and the methods to
evaluate their effectiveness, gain special attention [9]. In this
work it is shown how the choice of test examples affect

methods performance evaluation, which reinforces our belief
that algorithms’ complexity must be proven also analytically.

A whole category of methods that solve the basic AP
adopts methods from the graph theory and is based on finding
matchings in bipartite graphs. In the recent work [10] the
authors give detailed description of the AP based on bipartite
graphs. Something more, the authors focus particularly on the
bottleneck AP, focusing on bottleneck assignment sensitivity.

A work that investigates multiobjective optimization prob-
lems is [11] which considers single linear objective function
and l number of bottleneck objective functions. Even though
the AP is not particularly examined, the authors claim that
the AP can be represented as equivalent to a transportation
problem with a single linear and two bottleneck criteria.

A biobjective AP is examined in [6] where both objective
functions are from the bottleneck type. The presented approach
looks for Pareto optimal solutions of the bicriteria AP of
type MAXMIN-MINMAX. The method has computational
complexity O(n4 log n). The result of the algorithm is a subset
of the non-dominating solutions.

Many of the existing contemporary efforts to solve ef-
fectively biobjective and multiobjective versions of the AP
are adopting heuristic approaches. For example, in [7] are
described four variants of the resource dependent AP in which
the cost of a given assignment is the product of task cost
parameter by a convex cost function of the agent. While the
proposed solution in [7] is an approximation method, our goal
is to find an exact algorithm that solves the biobjective AP.

This paper is a part of our effort to examine extensively the
problem of biobjective AP in the case in which at least one
of the two objective functions is from the bottleneck type.
Here we focus on the version of the problem in which the
first objective function is a linear one (MINSUM), while the
second is a bottleneck function (MINMAX).

Following [12], we denote the examined biobjective AP
with MINSUM-MINMAX problem. We propose an algorithm
that solves the MINSUM-MINMAX problem and calculates
the list of all Pareto optimal solutions that can be represented:

P = P1 ∪ P2 ∪ . . . ∪ Pm, (1)

where each Pj , j = 1, 2, . . . ,m is a subset of equivalent Pareto
optimal solutions, and m is the number of such sets.

979-8-3503-1291-1/23/$31.00 ©2023 IEEE

This paper is organized as follows. In Sec. II we introduce
the basic mathematical notations and definitions and we for-
mulate the MINSUM-MINMAX problem. The algorithms are
given in Sec. III, and also their correctness and computational
complexity are proved. Sec. IV contains the conclusions.

II. BASIC NOTATIONS AND PROBLEMS FORMULATION

In this section we give the basic mathematical notations and
we formulate the MINSUM-MINMAX problem.

A. Basic Notations

With N(n) = {1, 2, . . . , n} we denote the set of first n
natural numbers. For each vector w with w(j) we denote its
element on position j, and for each matrix A with A(i, j) we
denote its element located on row i and column j.
[A]i1,i2,...,ikj1,j2,...,js

denotes the matrix that results from A after we
delete the rows with indexes i1, i2, . . . , ik, and columns with
indexes j1, j2, . . . , js.

With a(i) we denote the value of a variable a, and A(i) to
denote the value of a matrix A, that is calculated on the i-th
iteration of a loop.

For each square matrix A of order n, and each vector
(assignment) w ∈ Nk(n), k ∈ N(n), we define the two
functions FA(w) and GA(w).

The first function FA(w) represents a linear function that
is defined by the sum of the weighs as elements of A defined
by the assignment w.

FA(w) =

k∑
j=1

A(j, w(j)) (2)

We assume that the function FA(w) represents a cost criterion.
The second (bottleneck) function GA(w) is defined as the

maximum of the weight for a given assignment.

GA(w) = max
j∈N(k)

{A(j, w(j))} (3)

The function GA(w) represents a time criterion.
One of the standard approaches to represent an AP is as

a problem defied on a bipartite graph. With G = (U, V,E)
we denote a bipartite graph with vertices U ∪ V and a set of
edges E. Since the objective of our research are the balanced
APs, without any loss of generality we assume that U = N(n)
and V = N(n). Then, the edge {i, j} from E denotes that the
i-th agent from U can be assigned on the j-th position from
V . Each assignment is represented with a perfect matching in
the bipartite graph G, and vice versa. We denote each perfect
matching M with a special vector w = (j1, j2, . . . , jn), where
{i, ji} ∈ M , for each i ∈ N(n). Therefore, the components
of w are different natural numbers that are less than n + 1,
in other words w = (j1, j2, . . . , jn) is an assignment exactly
when it is a permutation of N(n).

Definition 1: We will say that the 0-1 matrix A defines
the set W of perfect matchings of the bipartite graph G with
w ∈W , if and only if w is a perfect matching of the bipartite
graph with an adjacency matrix A.

With WG we denote the set of all perfect matchings in the
bipartite graph G. We assume that G(U, V,E) is a complete
bipartite graph that is given along with the two weights ma-
trices A and T , which are defined by the objective functions.

B. MINSUM-MINMAX Problem

In the case of MINSUM-MINMAX problem, for each
each {i, j} ∈ E of the complete bipartite graph G(U, V,E),
A(i, j) > 0 is the cost, and T (i, j) > 0 is the time criterion.
Then, the number FA(w) is the cost, and the number GT (w)
is the time of the assignment w.

Definition 2: We will say that the assignment ŵ is Pareto
optimal with respect to {FA, GT }, when there does not exist
an assignment w, for which at least one of the following
statements holds:

• FA(w) < FA(ŵ) and GT (w) ≤ GT (ŵ);
• FA(w) ≤ FA(ŵ) and GT (w) < GT (ŵ).
Definition 3: We will call two assignments w′ and w′′

equivalent, when FA(w
′) = FA(w

′′) and GT (w
′) = GT (w

′′).
The assignment w′′ is dominated by the assignment w′ when

FA(w
′) < FA(w

′′) and GT (w
′) ≤ GT (w

′′) or FA(w
′) ≤

FA(w
′′) and GT (w

′) < GT (w
′′).

With P (given in (1)) we denote the set of all Pareto optimal
assignments.

Definition 4: We will call the subset P0 ⊆ P a minimal
complete set (MCS) of Pareto optimal solutions, when P0 =
{w1, w2, . . . , wm}, and wj ∈ Pj for each j ∈ N(m).

Problem 1 (MINSUM-MINMAX): Let p is an arbitrary
natural number. Calculate a list

L = {(Q1, i1, a1, t1), . . . , (Qm, imam, tm)} , (4)

where for each j ∈ {1, 2, . . . ,m} the following hold:
1) Qj ⊆ Pj and |Pj | = ij .
2) If |Pj | > p− 1, then |Qj | = p.
3) If |Pj | < p+ 1, then Qj = Pj .
4) For each w ∈ Pj it is fulfilled FA(w) = aj and

GT (w) = tj .
Without loss of generality, we assume that the sets Pj are

enumerated in such way, that aj ≤ aj+1.
Corollary 1: Let us suppose that the list (4) is composed

for p = 1. Then P0 =
m⋃
j=1

Qj is a (MCS).

III. MINSUM-MINMAX ALGORITHM

In this section we described the proposed algorithm that
solves the MINSUM-MINMAX problem (Prob. 1). The algo-
rithm 4) is based on a number of helper functions, which we
describe preliminary.

We will use a function DesSort(T) that calculates two
vectors (lookup tables) u and q, that contain the information
of the unique sorted elements of the matrix T . The table u
contains the unique elements in decreasing order, and the table
q contains the lists of the coordinates of the corresponding
values from u in the matrix T .

Example 1: Given the input matrix T that is defined in (11),
the function DesSort(T) outputs the lookup tables u and q:

u = (11, 10, 9, 8, 7, 6, 5), q = ({(3, 2)}, {(1, 3), (2, 3),
(3, 4), (4, 3)}, {(1, 4), (2, 2), (4, 1)}, {(1, 1), (2, 4),
(4, 2), (4, 4)}, {(1, 2), (3, 3)}, {(2, 1)}, {(3, 1)}).

(5)

We define a function Refresh(A, u, q, t) (Alg. 1) that takes
as an input a matrix A, the two lookup tables u and q, and an
arbitrary number t. The function modifies the matrix A:

A(i, j) = b, if T (i, j) ≥ t, i ∈ N(n), j ∈ N(n), (6)

where b denotes a barrier large number. The two lookup tables
u and q are also modified, so that the elements of A that have
been marked with b in the previous calls of the function, are
not processed again in the next calls.

Algorithm 1 Refresh(A, u, q, t)

Input: matrix A, tables u and q, number t
Output: modifies A, u and q

while u ̸= ∅ do
if u(1) ≥ t then

u← u \ {u(1)}, v ← q(1), q ← q \ {q(1)}
while v ̸= ∅ do
w ← v(1), v ← v \ {v(1)}, A(w(1), w(2))← b

end while
else

break
end if

end while

Example 2: Let the weight matrices A and T are defined
with (11). Then, the two lookup tables u and q, produced by
the function DesSort(T), are given in (5). Let b = 34 and
t = 10, and we will trace the calculations of Alg. 1.

Since u ̸= ∅, the first iteration of the outer while loop
starts. The current value u(1) = 11 ≥ t = 10, then from the
tables u and q are removed the first elements, and because v
stores the coordinates (3, 2), the algorithm sets A(3, 2) = 34.

Again, u ̸= ∅ and u(1) ≥ 10. The second iteration of the
outer loops starts, and it removes the first elements from both
lookup tables. Since in this case v stores the list of coordinates
(1, 3), (2, 3), (3, 4), (4, 3), the inner loop executes four itera-
tions which set A(1, 3) = A(2, 3) = A(3, 4) = A(4, 3) = 34.

Once again, u ̸= ∅, and the outer loop enters the third
iteration. Now u(1) = 9 < t = 10, the algorithm stops and:

A =

5 7 34 6
4 7 34 11
8 34 9 34
7 9 34 4

 , u = (9, 8, 7, 6, 5), and

q = (((1, 4), (2, 2), (4, 1)), ((1, 1), (2, 4), (4, 2), (4, 4)),

((1, 2), (3, 3)), ((2, 1)), ((3, 1))) .

The helper function TimeMin(T) calculates (w0, t0),
where w0 is an assignment that has the minimal time t0. The
algorithm that implements TimeMin(T) is given in [13].

We denote with Hungarian(Z) the function that imple-
ments the Hungarian method [2] with computational complex-
ity O(k3). The function takes as an input an arbitrary square
matrix Z of order k, and calculates the pair (a,w), where
a = min

w∈Pk
{FZ(w)}, w ∈ P k, FZ(w) = a, and P k is the set

of all permutations of N(n).
The Hungarian method is used as a stage in the following

branching procedure, defined as a function Branch(X, a, t)
(see Alg. 2). The branching procedure is applied on the initial
version of the Prob. 1, and after that on its sub-problems that
are calculated by the branching. The initial problem is stored
as a tuple of six elements

X = {v, w, Ā, T, n, τ}, (7)

• v = ∅ is an empty vector;
• w is defined in the pair (a,w) that is calculated by the

function Hungarian(A);
• Ā is a matrix with (n+ 1) rows and n columns, where

A(i, j) =

{
A(i, j), if i ∈ N(n) and j ∈ N(n),
j, if i = n+ 1 and j ∈ N(n);

(8)

• τ = τ(v, T) is an evaluation, such that for each assign-
ment w̃ it holds that GT (w̃) ≥ τ .

The function Branch(X, a, t) modifies the current record t
and composes a list of selected sub-problems X(s), which are
stored in the form {v(s), w(s), A(s), T (s), n − 1, τ (s)}. In the
general case, for a given sub-problem X = {v, w, Ã, T̃ , k, τ}
that is a result of a call to the branching procedure, the
following hold:

• v ∈ Nn−k(n) is a variation without repetition of class
(n− k) of n elements;

• w ∈ Nn(n) is a permutation of N(n) that contains such
an assignment, that FA(w) = a, and w(i) = v(i),∀i ∈
N(n− k);

• Ã is a (k + 1)× k,∀k ∈ {2, . . . , n} matrix;
• T̃ is a k × k, ∀k ∈ {2, . . . , n} matrix;
• τ = τ(v, T̃), where

τ(v, T̃) = max

{
T (1, v(1)), . . . , T (n− k, v(n− k)),

max
i∈N(k)

{ min
j∈N(k)

{T̃ (i, j)}}, max
j∈N(k)

{ min
i∈N(k)

{T̃ (i, j)}}
}
.

The computational complexity of the Alg. 2 is deter-
mined by the computational complexity of the function
Hungarian(Z). During the branching process of a problem
X = {v, w, Ã, T̃ , k, τ} the function Hungarian(Z) is ap-
plied k number of times with input matrices of order (k− 1).
Therefore, the complexity of Branch(X, a, t) is O(k(k−1)3).

We assume that the graph G is given with the two weight
matrices A and T (see Sec. II-B). We define the following two
subsets of the set of all assignments WG in the graph G.

• The set of all assignments with minimal cost:

W =

{
w ∈WG : FA(w) = min

w∈WG

{FA(w)}
}
. (9)

Algorithm 2 The branching procedure Branch(X, a, t)

Input: X = {v, w, Ã, T̃ , k, τ}, a and t
Output: The list S and updated record t

S ← ∅
for i← 1 to k do
vi ← v ∪ (Ã(k + 1, i)), Ai ← [Ã]1i
(ā, w̄)← Hungarian([Ai]

k)
if a = FA(vi) + ā then

wi ← vi ∪ (Ai(k, w̄(1)), . . . , Ai(k, w̄(k − 1)))
Ti ← [T̃]1i , τ ← τ(vi, Ti)
S ← S ∪ {vi, wi, Ai, Ti, k − 1, τ}
if t > GT (wi) then
t← GT (wi)

end if
end if

end for

• The set of all assignments with minimal cost, that have
the minimal possible time:

Ŵ =

{
ŵ ∈W : GT (ŵ) = min

w∈W
{GT (w)}

}
. (10)

We define a function MinCostMinT ime(A, T, p), which
takes as parameters the matrices A and T , and an arbitrary
natural number p. The function calculates the tuple {Q, i, a, t}:

• Q ⊆ Ŵ ;
• i = |Ŵ |, a = min

w∈WG

{FA(w)} and t = min
w∈W
{GT (w)};

• if |Ŵ | > p− 1, then |Q| = p;
• if |Ŵ | < p+ 1, then Q = Ŵ .
It is directly verified that Ŵ is a set of equivalent Pareto

optimal solutions.
The implementation of MinCostMinT ime(A, T, p) (Alg.

3) traverses only the assignments with minimal cost, and
separates those of them that have the minimal possible time.
The traversal is performed by the function Branch(X, a, t).

Alg. 3 is illustrated by the following Examp. 3.
Example 3: Let the weight matrices A and T be defined

with (11) below. The function MinCostMinT ime(A, T, p)
performs the following calculations.

A=

5 7 2 6
4 7 13 11
8 11 9 6
7 9 8 4

T =

8 7 10 9
6 9 10 8
5 11 7 10
9 8 10 8

 (11)

Before the while loop, the algorithm evaluates that a = 21,
t = 10, and the tuple that stores the problem X is initialized
with X(0), given on the first row of Tab. I.

On the first iteration of the while loop the algorithm
performs the branching Branch(X, 21, 10) which results in
(S

(1)
1 , t(1)) with t(1) = 10, and S

(1)
1 = (X(1)) (see second

row of Tab. I).
On the second iteration of the while loop the branch-

ing procedure returns (S
(2)
1 , t(2)) with t(2) = 10, S

(2)
1 =

Algorithm 3 MinCostMinT ime(A, T, p)

Input: Weight matrices A and T , and p ∈ N
Output: {Q, i, a, t}
(a,w)← Hungarian(A), t← GT (w), i← 0
Q = ∅ {Q is a queue}
X ← {∅, w,A, T, n, τ} {initial problem for branching}
S = ∅, push(S,X) {S is a stack}
while S ̸= ∅ do

X ← top(S), pop(S) {X = (v, w,A, T, k, τ)}
if τ ≤ t then

if k > 2 then
(S1, t)← Branch(X, a, t), S ← S ∪ S1

else
for j ← 1 to 2 do
a1 ← FA(w), t1 ← GT (w)
if a = a1 and t1 < t then
t← t1, Q← {w}, i← 1

else
if a = a1 and t1 = t then

if i < p then
enqueue(Q,w)

end if
i← i+ 1

end if
end if
x← w(n− 1), w(n− 1)← w(n), w(n)← x

end for
end if

end if
end while

(X(21), X(22)) (see the third and fourth row of Tab. I).
Therefore, after the second iteration S contains two sub-
problems. As a result, the next two iterations of the while
loop will execute the inner for loop. After the fourth iteration
of the while loop, the algorithm stops and the result is:

Q = ((3, 2, 1, 4), (3, 1, 4, 2)) , i = 2, a = 21, t = 10. (12)

The correctness of Alg. 3 follows from the correctness
of the functions Hungarian(Z) and Branch(X, a, t), and
also from the fact that the main loop of the algorithm stops
after a finite number of iterations. It is enough to note that
the problems, that are included in S for further processing,
define different assignments with minimal cost. Also, each
iteration of the loop substitutes a problem from S with a
finite number of sub-problems that have less number of free
variables. Therefore, it exists such a constant C⋆, that is
determined by the number of assignments with minimal cost,
such that the complexity of the MinCostMinT ime(A, T, p)
is evaluated to C⋆O(n5).

Based on the above helper functions, we define the Alg. 4
that solves the MINSUM-MINMAX problem (Prob. 1).

We will illustrate the Alg. 4 with the following Examp. 4.
Example 4: We will solve Prob. 1 using Alg. 4 when the

weight matrices A and T are defined with (11) and p = 4.

TABLE I
VALUES OF THE SUB-PROBLEMS X THAT RESULT FROM BRANCHING PROCEDURE IN ALG. 3

X v w A T k τ

X(0) ∅ (3, 2, 1, 4)

5 7 2 6
4 7 13 11
8 11 9 6
7 9 8 4
1 2 3 4

 8 7 10 9

6 9 10 8
5 11 7 10
9 8 10 8

 4 8

X(1) (3) (3, 2, 1, 4)

 4 7 11
8 11 6
7 9 4
1 2 4

 6 9 8

5 11 10
9 8 8

 3 10

X(21) (3, 2) (3, 2, 1, 4)

 8 6
7 4
1 4

 (
5 10
9 8

)
2 10

X(22) (3, 1) (3, 1, 4, 2)

 11 6
9 4
2 4

 (
11 10
8 8

)
2 10

Algorithm 4 Solution of the MINSUM-MINMAX problem
Input: Weight matrices A and T , and p ∈ N
Output: The list L defined in (4)

t←∞, a← 0, L← ∅
(w0, t0)← TimeMin(T)
b← FA(w0) {b is barrier large number}
(u, q)← DesSort(T)
while t0 < t do
(Q, i, a, t)←MinCostMinT ime(A, T, p)
L← L ∪ {(Q, i, a, t)}
if t0 < t then
(A,m, q)← Refresh(A,m, q, t)

end if
end while

After the initialization of the variables, the algorithm cal-
culates (w0, t0), where t0 = 8 and w0 = (1, 4, 3, 2).

The next step of the algorithm is to select a barrier large
number b. If W ′ = {w′ ∈WG : GT (w

′) = t0}, then for

a′ = min
w∈W ′

{FA(w)}, (13)

it holds that FG(w0) ≥ a′. This allows to select b = FG(w0)
as a barrier large number. In particular, b = FG(w0) = 34.

The function DesSort(T) calculates the lookup tables of
the unique sorted values u and the corresponding coordinates
in the matrix T (see Examp. 1).

Since t = ∞, the algorithm enters the first iteration of the
while loop. The calculations of MinCostMinT ime(A, T, 4)
are given in details in Examp. 3 with result (Q, i, a, t) given
in (12). (Q, i, a, t) is included as the first element in the list L.
By the definition of Alg. 3 it follows that Q ⊆ Ŵ and hence,
Q is a set of Pareto equivalent optimal solutions.

The function Refresh(A, u, q, t) edits A, u and q, because
t0 = 8 < 10 = t. The calculations are performed with Alg. 1,
and are given in details in Examp. 2.

Since the current value of t is 10, the algorithm will start
the second iteration of the while loop. For the current value of
the cost matrix A the function MinCostMinT ime(A, T, 4)

calculates (Q, i, a, t), where Q = {(2, 1, 3, 4)} , i = 1, a = 24
and t = 8. Since t = 8, then t = t0, and the following holds.

1) Q is the set of equivalent Pareto optimal solutions

Q =

{
w : GT (w) = t0, FA(w) = min

w∈W ′
{FA(w)}

}
,

where W ′ = {w′ ∈ WG : GT (w
′) = t0}. Particularly,

for a′ from (13) it is fulfilled a′ = 24.
2) This is the last iteration, and the algorithms stops.

The result is the following list:

L = ((Q1, 2, 21, 10), (Q2, 1, 24, 8)) , (14)

where Q1 = {w1, w2} with w1 = (3, 2, 1, 4), w2 =
(3, 1, 4, 2), and Q2 = {w3} with w3 = (2, 1, 3, 4).

The list L gives full information about the Pareto optimal
solutions of the Prob. 1. We have verified that |P1| = i1 =
2 and |P2| = i2 = 1 (see (14)). Since the calculations are
performed for p = 4, this means that P1 = Q1 = {w1, w2}
and P2 = Q2 = {w3}. Therefore, the equation (1) has the
form P = Q1 ∪Q2 = {w1, w2, w3}.

A

AwδA

B δB

24 29 34 37

s

10

11

t

Fig. 1. Plot of the solution of Examp. 4 with cost criterion s as abscissa,
and time criterion t as ordinate. Black points denote assignments, while white
points denote Pareto optimal solutions

Fig. 1 illustrates the result in the Examp. 4. This time
the abscissa represents the cost criteria, and is denoted by
s, while the ordinate represents the time criteria t. Each
assignment is represented with a point Aw with Cartesian
coordinates (FA(w), GT (w)). If the assignment w ̸= wj ,
j ∈ {1, 2, 3}, then the point is depicted as a solid black
dot. The points A(21, 10) and B(24, 8) are plotted as white

dots. The point A(21, 10) corresponds to the equivalent Pareto
optimal solutions w1 and w2. The point B(24, 8) corresponds
to the single assignment from the class Q2.

Both angles γA = {(s, t) : s ≤ 21 and t ≤ 10}, and γB =
{(s, t) : s ≤ 24 and t ≤ 8} are colored in gray. On Fig. 1 it
is clear that there is not such point Aw colored in black, that
is contained in the set F = γA ∪ γB . Besides that, A /∈ γB
and B /∈ γA, which shows that for the assignments w1, w2

and w3 is fulfilled Def. 2.
The rays of the angles δA = {(s, t) : s ≥ 21 and t ≥ 10},

and δB = {(s, t) : s ≥ 24 and t ≥ 8} are plotted in dashed
lines. Each assignment w for which Aw falls within δA is
dominated by w1, and each assignment w for which Aw falls
within δB is dominated by w3. Fig. 1 clearly shows that each
assignment w /∈ Q1∪Q2 is dominated either by w1, or by w3.
Hence, all Pareto optimal solutions are contained in Q1 ∪Q2.

Theorem 1: Alg. 4 is correct.
Proof: The proof uses mathematical induction and the

fact that the functions TimeMin(A, T, a), DesSort(T),
Refresh(A, u, q, t), and MinCostMinT ime(A, T, p) are
proved to be correct. We prove that each iteration of the while
loop correctly calculates each element of the list L.

Before the loop, the algorithm defines t =∞, a = 0, L =
∅. It evaluates (T0, w0, t0) with TimeMin(A, T, a), b with
FA(w0), and (u, q) with DesSort(T).

Base case. We prove the correctness of the first iteration
of the loop. The correctness of MinCostMinT ime(A, T, p)
proves that the element (Q(1), i(1), a(1), t(1)) is the member
of the list L that we look for. Also, we prove that P1 ={
w ∈WG : FA(w) = a(1) and GT (w) = t(1)

}
is the first set

of Pareto optimal solutions in (1) and |P1| = i(1).
If the condition t0 < t(1) is fulfilled, (A(1), u(1), q(1)) is

evaluated using the call to Refresh(A, u, q, t(1)), and the
while loop proceeds to its second iteration.

Inductive step. We assume that the first k iterations have
correctly calculated the first k elements of the list L, t0 < t(k),
and as a result the algorithm has evaluated (A(k), u(k), q(k)).

During the (k + 1)-st iteration, the algorithm calculates
(Q(k+1), i(k+1), a(k+1), t(k+1)), and defines

Pk+1 =
{
w ∈WG :FA(w) = a(k+1) and GT (w) = t(k+1)

}
.

We prove that the above Pk+1 is the (k + 1)-st Pareto
optimal assignment that also takes place in (1), and that
(Q(k+1), i(k+1), a(k+1), t(k+1)) is the correctly calculated (k+
1)-st element of the list L.

The while loop stops after no more than n2 number of
iterations, because for each t(k) there exists an element T (i, j)
in the matrix T , for which t(k) = T (i, j).

Proposition 1: The computational complexity of the Alg.
4 is C⋆O(n7), where the constant C⋆ is determined by the
computational complexity of MinCostMinT ime(A, T, p).

Proof: Indeed, the complexity of each of the functions
TimeMin(A, T, a), DesSort(T) and Refresh(A, u, q, t) do
not exceed the complexity of MinCostMinT ime(A, T, p).
Therefore, the k-th iteration of the while loop has complexity

C⋆
kO(n5), where C⋆

k is determined by the complexity of
MinCostMinT ime(A, T, p), and depends on the number of
assignments with minimal cost, with the cost matrix A(k). We
denote with C⋆ = max{C⋆

1 , C
⋆
2 , . . . , C

⋆
m}, and the resulting

complexity of Alg. 4 is C⋆O(n7).

IV. CONCLUSION

The algorithm that we present in this paper finds the com-
plete description of the set P of all Pareto optimal solutions
of the biobjective AP with one linear and one bottleneck
objective functions. For each set Pi of equivalent Pareto
optimal solutions the algorithm finds the exact number of
elements, and separates a subset Qi with a predefined bound of
the number of elements. The selection of a single element from
each Pi will result in the MSC of Pareto optimal solutions.
The correctness of Alg. 4 is proved, and its computational
complexity is evaluated. Besides the provided analytical proof,
the graphical representation in Fig. 1 also gives a geometrical
proof that the problem is solved correctly.

The function MinCostMinT ime(A, T, p) (Alg. 3) solves
the problem for finding of the set of all assignments with
minimal cost, that are realized for minimal possible time. It is
clear that a particular case of the latter problem, is the problem
for finding all assignments with minimal cost.

REFERENCES

[1] R. Burkard, M. Dell’Amico, and S. Martello, Assignment problems, ser.
SIAM. University City, Philadelphia: Society for Industrial and Applied
Mathematics, 2009.

[2] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1–2, pp. 83–97, March 1955.

[3] T. Oncan, Z. Şuvak, M. H. Akyüz, and I. K. Altınel, “Assignment
problem with conflicts,” Computers & Operations Research, vol. 111,
pp. 214–229, 2019.

[4] S. Dhouib, “An intelligent assignment problem using novel heuristic:
The dhouib-matrix-ap1 (dm-ap1): Novel method for assignment prob-
lem,” International Journal of Intelligent Systems and Applications in
Engineering, vol. 10, no. 1, p. 135–141, 2022.

[5] K. Morita, S. Shiroshita, Y. Yamaguchi, and Y. Yokoi, “Fast primal-dual
update against local weight update in linear assignment problem and its
application,” Information Processing Letters, vol. 183, p. 106432, 2024.

[6] Y. Ge, M. Chen, and H. Ishii, “Bi-criteria bottleneck assignment prob-
lem,” in 2012 Annual Meeting of the North American Fuzzy Information
Processing Society (NAFIPS), 2012, pp. 1–5.

[7] L. Yedidsion and D. Shabtay, “The resource dependent assignment
problem with a convex agent cost function,” European Journal of
Operational Research, vol. 261, no. 2, pp. 486–502, 2019.

[8] O. Berman, D. Einav, and G. Handler, “The constrained bottleneck
problem in networks,” Operations Research, vol. 38, no. 1, pp. 178–
181, 1990.

[9] H. Ishibuchi, L. He, and K. Shang, “Regular Pareto front shape is not
realistic,” in 2019 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2019, pp. 2034–2041.

[10] E. Michael, T. A. Wood, C. Manzie, and I. Shames, “Sensitivity analysis
for bottleneck assignment problems,” European Journal of Operational
Research, vol. 303, no. 1, pp. 159–167, 2022.

[11] C. T. Bornstein, N. Maculan, M. Pascoal, and L. L. Pinto, “Multiobjec-
tive combinatorial optimization problems with a cost and several bottle-
neck objective functions: An algorithm with reoptimization,” Computers
& Operations Research, vol. 39, no. 9, pp. 1969–1976, 2012.

[12] P. Hansen, “Bicriterion path problems,” Multiple Criteria Decision
Making Theory and Application, pp. 109–127, 1980.

[13] L. M. Laskov and M. L. Marinov, “List of selected number of optimal
solutions of the assignment problem by time criterion,” in 2022 Inter-
national Conference Automatics and Informatics (ICAI). IEEE, 2022,
pp. 100–106.

