
Pareto Optimal Solutions of the Biobjective
Bottleneck Assignment Problem

Lasko Laskov
Department of Informatics
New Bulgarian University

Sofia, Bulgaria
llaskov@nbu.bg

Marin Marinov
Department of Informatics
New Bulgarian University

Sofia, Bulgaria
mlmarinov@nbu.bg

Abstract—In this paper we describe the computation of all
Pareto optimal solutions of a fundamental biobjective variant
of the assignment problem (AP). The examined problem is the
MAXMIN-MINMAX AP in which both criteria are non-linear
bottleneck functions: maximal capacity and minimal time.

We introduce the main algorithm that solves the biobjective
bottleneck AP, along with its helper functions that are needed for
its implementation. We prove the correctness of the algorithms
their computational complexity.

The presented method is applicable to majority of the
MAXMIN-MINMAX versions of the AP, and with few modi-
fications can be adopted to solve the other standard biobjective
bottleneck APs.

Index Terms—combinatorial optimization, assignment prob-
lem, Pareto optimality, biobjective optimization

I. INTRODUCTION

Along with the network shortest path, the travelling sales-
man problem and the transportation problem, the assignment
problem (AP) [1] is one of the fundamental subjects in com-
binatorial optimization. Since it was one of the problems that
were used to establish the discipline operation research, it has
been investigated since the 1950s, with the most famous work
being [2] that introduces the well-known Hungarian method
that solves the basic AP in polynomial time complexity. Since
then, many works have been devoted to the AP and its
variants based on different combinatorial techniques, graph
theory algorithms, and heuristic approaches. Nowadays, AP
is a current topic of research in the field (see for example [3],
[4], [5]),and particularly the bottleneck AP [6].

The basic variant of AP is formulated as the problem of
finding an assignment of n tasks (jobs, projects, processes)
to n agents (workers, companies, processors) that is a subject
of a given single objective function, most commonly the total
cost of the proposed assignment. In this way the goal of the
problem is to minimize the sum of the costs determined by
the assignment, which is a linear function.

As shown in [1], different objective functions can be used
as a subject of the problem. In the case in which for example
a time criterion (see (4)) is minimized, or a capacity criterion
(see (3)) is maximized, in literature they are referred to as
bottleneck objective functions [6].

For many practical problems a single objective function
is not enough, and in this case models are defined with
two objective functions to form a biobjective (or bicriteria)
AP (see for example [7], [8]). In the case in which the
objective functions are more than two, the AP is brought to a
multiobjective combinatorial optimization problem [9].

In the case of biobjective AP the optimization problem is
a subject of two objective functions. If the two functions are
conflicting, this means that it cannot be found a solution that
improves either one of the criteria, without making worse the
other criterion. In this case we are interested to find the set
of non-dominant solutions that are also called Pareto optimal
[8], [10], [11].

By selecting the concrete functions (see Sec. II), different
types of biobjective AP can be formulated. In his notable work
[12] Hansen examines ten types of biobjective path problems
and their complexity. He proposes two polynomial algorithms
along with two fully polynomial approximation schemes. Here
we are adopting the notations of [12] applied to the AP.

The goal of our research is to examine completely the
problem of computation of all Pareto optimal solutions of
the biobjective AP, in the case in which at least one of the
objective functions is from the bottleneck type. Here, we focus
particularly on the case in which both criteria are bottleneck
functions: the MAXMIN and the MINMAX functions. Follow-
ing the notations introduced in [12], we denote this variant of
the biobjective AP as MAXMIN-MINMAX problem.

We propose an algorithm and all its helper functions that
solve the MAXMIN-MINMAX problem and calculate a list
of all Pareto optimal solutions that can be represented:

P = P1 ∪ P2 ∪ . . . ∪ Pm, (1)

where each Pj , j = 1, 2, . . . ,m is a subset of equivalent Pareto
optimal solutions, and m is the number of such sets.

This paper is organized as follows. In Sec. II we introduce
the basic mathematical notations and definitions and we for-
mulate the MAXMIN-MINMAX problem. The algorithms are
given in Sec. III, and also their correctness and computational
complexity are proved. Finally, in Sec. IV we give conclusions
and discussions.

979-8-3503-1291-1/23/$31.00 ©2023 IEEE

II. BASIC NOTATIONS AND PROBLEMS FORMULATION

In this section we give the basic mathematical notations and
we formulate the main problem covered in the paper.

A. Basic Notations

With N(n) = {1, 2, . . . , n} we denote the set of first n
natural numbers. For each vector w with w(j) we denote its
element on position j, and for each matrix A with A(i, j) we
denote its element located on row i and column j.

For an arbitrary matrix A, with

[A]i1,i2,...,ikj1,j2,...,js
(2)

we denote the matrix that results from A after we delete the
rows with indexes i1, i2, . . . , ik, and columns with indexes
j1, j2, . . . , js.

When we describe the execution of loops in algorithms, we
will use the notation a(i) to the denote the value of a variable
a, and A(i) to denote the value of a matrix A, that is calculated
on the i-th iteration.

For each square matrix A of order n, and each vector
w ∈ Nk(n), k ∈ N(n), we define the two functions HA(w)
and GA(w). As we will clarify, the vector w represents an
assignment.

The first function is a bottleneck function and it is the
minimum of the weights for a given assignment.

HA(w) = min
j∈N(k)

{A(j, w(j))} (3)

The function HA(w) represents the capacity criterion.
The second function GA(w) is also a bottleneck function

and it is defined as the maximum of the weight for a given
assignment.

GA(w) = max
j∈N(k)

{A(j, w(j))} (4)

The function GA(w) represents a time criterion.
One of the standard approaches to represent an AP is as a

problem defied on a bipartite graph [6]. With G = (U, V,E)
we denote a bipartite graph with vertices U ∪ V and a set of
edges E. Since the objective of our research are the balanced
APs, without any loss of generality we assume that U = N(n)
and V = N(n). Then, the edge {i, j} from E denotes that the
i-th agent from U can be assigned on the j-th position from
V . Each assignment is represented with a perfect matching in
the bipartite graph G, and vice versa. We denote each perfect
matching M with a special vector w = (j1, j2, . . . , jn), where
{i, ji} ∈ M , for each i ∈ N(n). Therefore, the components
of w are different natural numbers that are less than n+1, in
other words w = (j1, j2, . . . , jn) is an assignment if and only
if it is a permutation of N(n).

Definition 1: We will say that the 0-1 matrix A defines
the set W of perfect matchings of the bipartite graph G with
w ∈W , if and only if w is a perfect matching of the bipartite
graph with an adjacency matrix A.

With WG we denote the set of all perfect matchings in the
bipartite graph G. We assume that G(U, V,E) is a complete

bipartite graph that is given along with the two weights
matrices A and T , which are defined by the corresponding
objective functions.

B. The MAXMIN-MINMAX Problem

In the case of MAXMIN-MINMAX problem, for each edge
{i, j} ∈ E the weight A(i, j) > 0 represents the capacity, and
the weight T (i, j) > 0 represents the time criterion. Then, the
number HA(w) is the capacity, and the number GT (w) is the
time of the assignment w.

Definition 2: We will say that the assignment ŵ is Pareto
optimal with respect to {HA, GT } when there does not exist
an assignment w, for which at least one of the following
statements holds:

• HA(w) > HA(ŵ) and GT (w) ≤ GT (ŵ);
• HA(w) ≥ HA(ŵ) and GT (w) < GT (ŵ).
Definition 3: We will call two assignments w′ and w′′ equiv-

alent, when HA(w
′) = HA(w

′′) and GT (w
′) = GT (w

′′).
The assignment w′′ is dominated by the assignment w′ when

HA(w
′) > HA(w

′′) and GT (w
′) ≤ GT (w

′′) or HA(w
′) ≥

HA(w
′′) and GT (w

′) < GT (w
′′).

As given in (1), with P we denote the set of all Pareto
optimal assignments.

Definition 4: We will call the subset P0 ⊆ P a minimal
complete set (MCS) of Pareto optimal solutions, when P0 =
{w1, w2, . . . , wm}, and wj ∈ Pj for each j ∈ N(m).

Problem 1 (MAXMIN-MINMAX): Calculate the list

L = {(B1, w1, a1, t1), . . . , (Bm, wm, am, tm)} , (5)

where for each j ∈ {1, 2, . . . ,m}, Bj is the 0-1 matrix that
defines the set Pj from (1), wj ∈ Pj , aj = HA(wj) and
tj = GT (wj).

Corollary 1: Let us suppose that the list (5) is composed.
Then P0 = {w1, w2, . . . , wn} is a MCS.

III. THE MAXMIN-MINMAX ALGORITHM

In this section we describe the proposed algorithms that
solves the problem MAXMIN-MINMAX (Prob. 1) which is
defined in Sec. II-B. The main method (Alg. 3) is based on a
number of helper functions, which we introduce beforehand.

We will use a function PerfectMatching(Z) that takes as
an input an arbitrary 0-1 matrix Z, and verifies if the bipartite
graph GZ with adjacency matrix Z has a perfect matching.
The function calculates the pair (ind, w0), where ind is either
0 if GZ does not have a perfect matching, or 1 if GZ has a
perfect matching. In the case in which ind = 1, w0 stores
one perfect matching of GZ . The PerfectMatching(Z)
function is implemented using the Hopcroft-Karp algorithm
[13] for maximum matchings in bipartite graphs, which has
computational complexity O(n

5
2).

We define a function AscSort(T,A, a) that sorts in ascend-
ing order the elements T (i, j) of the input matrix T , for which
A(i, j) ≥ a. The function returns two lookup tables:

• the sorted unique values of the elements of the matrix T ,
stored in the lookup table u, with p number of elements,
p ≤ n2 and u(s) < u(s+ 1) for s = 1, 2, . . . , p;

• the corresponding indexes of the in the matrix T , stored
in the lookup table q, with p number of elements, where
q(s) is the list of all coordinates in T whose values are
equal to u(s):

q(s) = {(i, j) : T (i, j) = u(s) and A(i, j) ≥ a}. (6)

The function TimeMin(A, T, a) implements optimization
with respect to the time criterion GT (w), depending on the
input parameter a that satisfies the inequality

0 ≤ a ≤ max
w∈WG

{HA(w)} . (7)

For its purpose, we define the subset of perfect matchings

W a = {w ∈WG : HA(w) ≥ a} , (8)

where WG denotes the set of all perfect matchings in the graph
G. Then, the function TimeMin(A, T, a) calculates the tuple
(T0, w0, t0), where

• T0 is a 0-1 matrix that defines the subset of perfect
matchings

W0 =

{
w0 ∈W a : GT (w0) = min

w∈Wa
{GT (w)}

}
; (9)

• w0 ∈W a and GT (w0) = min
w∈Wa

{GT (w)};
• t0 = GT (w0).
In the case in which a = 0, then W a = WG and GT (w0) =

min
w∈WG

{GT (w)}. In other words, w0 represents the solution of

the basic MINMAX problem, and t0 is the minimal possible
time of an assignment with the weight matrix T . Something
more, the matrix T0 defines the set of all optimal solutions by
time criterion (see [14]).

Algorithm 1 Time minimum TimeMin(A, T, a)

Input: the input matrices A, T and the parameter a
Output: (T0, w0, t0)

T0 ← 0n×n

ind← 0
s← 0
(u, q)← AscSort(T,A, a)
while ind = 0 do
s← s+ 1
∀(i, j) ∈ q(s) set T0(i, j)← 1
(ind, w0)← PerfectMatching(T0)
if ind = 1 then
t0 ← GT (w0)

end if
end while

The Alg. 1 us illustrated with the following example.
Example 1: Let the bipartite graph G be defined with the

weight matrices, given below.

A=


5 7 2 6
4 7 13 11
8 11 9 6
7 9 8 4

T =


8 7 10 9
6 9 10 8
5 11 7 10
9 8 10 8

 (10)

We will trace the execution of Alg. 1 for a = 5.
Firstly, the algorithm initializes the matrix T0 with the zero
square matrix of order n, denoted by 0n×n, and initializes
the variables ind and s with zeroes. It calls the sorting
function AscSort(T,A, a) that calculates the lookup tables
u = (5, 7, 8, 9, 10, 11) and

q = ({(3, 1)}, {(1, 2), (3, 3)}, {(1, 1), (2, 4), (4, 2)},
{(1, 4), (2, 2), (4, 1)}, {(2, 3), (3, 4), (4, 3)}, {(3, 2)}).

(11)

On the next stage, the algorithm enters the while loop, and
starts iterating. The values T

(1)
0 , T (2)

0 , T (3)
0 of the matrix T0

for each iteration of the loop are given in Tab. II.
Apparently, the graph GT0

, defined by the adjacency matrix
T0, for the first and second iteration, does not have a perfect
matching, and ind will remain equal to 0. In the third itera-
tion the function PerfectMatching(T

(3)
0) discovers that the

adjacency matrix T
(3)
0 contains at least one perfect matching

w
(3)
0 = (1, 4, 3, 2), and GT (w

(3)
0) = 8.

Proposition 1: The Alg. 1 correctly defines the function
TimeMin(A, T, a).

Proof: The correctness of the Alg. 1 is proved by in-
duction, and it is based on the correctness of the functions
PerfectMatching(Z) and AscSort(T,A, a).

Base case. We assume that after the first iteration of the
while loop, ind = 1. Hence, the matrix T0 has elements

T0(i, j) =

{
1, if T (i, j) = u(1) and A(i, j) ≥ a

0, otherwise.
(12)

The function PerfectMatching(T0) calculates that the
bipartite graph GT0

has at least one perfect matching. Let w′ is
a perfect matching of GT0

. Then w′ ∈W a, T (i, w′(i)) = u(1)
and A(i, w′(i)) ≥ a, for each i ∈ N(n).

Since u(1) is equal to the minimal element of T (i, j), for
which A(i, j) ≥ a, then

GT (w
′) = u(1) = min

w∈Wa
{GT (w)} (13)

Therefore, in this case the result (T0, w0, t0) is correctly
calculated.

Inductive step. Let s > 1 is such that for all s−1 iterations
of the while loop ind = 0, but after the s iteration ind = 1.
This means that the following two observations hold.

1) The matrix T
(s−1)
0 with elements

T
(s−1)
0 (i, j) ={

1, if T (i, j) ≤ u(s− 1) and A(i, j) ≥ a

0, otherwise

is an adjacency matrix of the bipartite graph G
T

(s−1)
0

,
which does not have perfect matchings.

2) The matrix T0 with elements

T0(i, j) =

{
1, if T (i, j) ≤ u(s) and A(i, j) ≥ a

0, otherwise

is an adjacency matrix of the bipartite graph GT0
, which

has at least one perfect matching.

Then, for each perfect matching w′ of GT0
it is fulfilled

that w′ ∈ W a, T (i, w′(i)) ≤ u(s), for each i ∈ N(n) and
there exists at least one i0 for which T (i0, w

′(i0)) = u(s).
Therefore,

GT (w
′) = u(s) = min

w∈Wa
{GT (w)}, (14)

which proves that in this case Alg. 1 calculates correctly
(T0, w0, t0).

To complete the proof, it is enough to notice that from the
inequality (7) follows that there exists at least one perfect
matching ŵ. such that HA(ŵ) ≥ a. Then A(i, ŵ(i)) ≥ a
for each i ∈ N(n) and for some s0 it is fulfilled that
u(s0) = GT (ŵ). This proves that after no more then s0
number of iterations, the algorithm will reach ind = 1.

Proposition 2: The complexity of the Alg. 1 is O(n
9
2).

Proof: The implementation of the algorithm uses the
function PerfectMatching(Z) which has complexity O(n

5
2)

because it is implemented using the Hopcroft-Karp algorithm
[13]. The complexity of both functions AscSort(T,A, a) and
GT is less than O(n

5
2). Also, the while loop executes less than

n2 number of iterations. Therefore, the computational com-
plexity of the function TimeMin(A, T, a) can be evaluated
to O(n

9
2).

Similar to the function AscSort(T,A, a), we define a
function DesSort(A, T, t) that sorts in descending order the
elements A(i, j) of the matrix A, for which T (i, j) < t. The
function DesSort(A, T, t) returns as a result two vectors that
represent lookup tables u and q, that are defined in analogy
to the result of the function AscSort(T,A, a).

The function CapacityMax(A, T, t) implements optimiza-
tion with respect to the capacity criterion HA(w) that depends
on an input parameter t. For each t ≥ min

w∈WG

{GT (w)} we

define

CapacityMax(A, T, t) = max
w∈Wt

{HA(w)}, (15)

where Wt = {w ∈ WG : GT (w) < t}. In other words,
the function CapacityMax(A, T, t) calculates the maximal
capacity of an assignment w ∈ Wt. Apparently, if t >

max
i∈N(n),j∈N(n)

{T (i, j)}, then Wt = WG and (15) implements

the solution of the basic single criterion problem for maximal
capacity.

The result of the function CapacityMax(A, T, t) is stored
in the tuple (A0, w0, a0), where

• A0 is a 0-1 matrix that defines the subset of perfect
matchings

W0 =

{
w0 ∈Wt : HA(w0) = max

w∈Wt

{HA(w)}
}
; (16)

• w0 ∈Wt and HA(w0) = max
w∈Wt

{HA(w)};
• a0 = HA(w0).
We use the following Alg. 2 to calculate the function

CapacityMax(A, T, t).
The two algorithms Alg. 1 and Alg. 2 are similar, however

they differ in the objective function that is the subject of

Algorithm 2 Capacity maximum CapacityMax(A, T, t)

Input: the input matrices A, T and the parameter t
Output: (A0, w0, a0)
A0 ← 0n×n

ind← 0
s← 0
(u, q)← DesSort(A, T, t)
while ind = 0 do

s← s+ 1
∀(i, j) ∈ q(s) set A0(i, j)← 1
(ind, w0)← PerfectMatching(A0)
if ind = 1 then
a0 ← GT (w0)

end if
end while

optimization, and that Alg. 1 searches for its minimum, while
Alg. 2 searches for its maximum. The correctness of Alg. 2
is proved in analogy to Prop. 1, and its complexity is proved
to be O(n

9
2) in analogy to Prop. 2.

Example 2: Let the bipartite graph G be defined with the
weight matrices, given in (10). We will trace the calculations
of Alg. 2 when t = 9.

The sorting step of the algorithm calculates the lookup
tables u = (11, 9, 8, 7, 5, 4) and

q = ({(2, 4)}, {(3, 3), (4, 2)}, {(3, 1)}, {(1, 2)},
{(1, 1)}, {(2, 1), (4, 4)}).

(17)

Then the algorithm enters the while loop which calculates
the values A(1)

0 , A
(2)
0 , . . . , A

(5)
0 of the of the matrix A0 in each

of the five iterations, as given in Tab. I.
The graph GA0 that is defined by the adjacency matrix A0

for the first four iterations (see Tab. I) does not contain a
perfect matching and the variable ind will stay equal to 0. On
the fifth iteration the function PerfectMatching(A

(5)
0) finds

that in this case at least one perfect matching exists, and it is
w

(5)
0 = (1, 4, 3, 2), with maximal capacity HA(w

(5)
0) = 5.

Based on the helper functions TimeMin(A, T, a) and
CapacityMax(A, T, t) we define the following Alg. 3 that
solves MAXMIN-MINMAX problem defined in Prob. 1.

Algorithm 3 Solution of the MAXMIN-MINMAX problem
Input: the input matrices A, T
Output: the list L defined in (5)
L← ∅
t←∞
a← 0
(B(0), w(0), t(0))← TimeMin(A, T, a)
while t(0) < t do
(·, ·, a)← CapacityMax(A, T, t)
(B,w, t)← TimeMin(A, T, a)
L← L ∪ {(B,w, a, t)}

end while

TABLE I
THE MATRIX A0 FOR EACH ITERATION OF ALG. 2

A
(1)
0 A

(2)
0 A

(3)
0 A

(4)
0 A

(5)
0 0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0


 0 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0


 0 0 0 0

0 0 0 1
1 0 1 0
0 1 0 0


 0 1 0 0

0 0 0 1
1 0 1 0
0 1 0 0


 1 1 0 0

0 0 0 1
1 0 1 0
0 1 0 0



Example 3: We will trace the calculations of Alg. 3 with
the bipartite graph G that is defined with the weight matrices,
given in (10).

Before the loop, the algorithm executes a call to the function
TimeMin(A, T, a), where a = 0. The values stored in the
resulting matrix B(0) are given in the column of Tab. II that
is labeled with i = 0. The values of the other two components
of the result of the time optimization function are w(0) =
(1, 4, 3, 2) and t(0) = 8.

We will point out that the matrix B(0) defines all perfect
matchings that have minimal time.

On the first iteration of the while loop the function
CapacityMax(A, T, t) results in maximal capacity a(1) eval-
uated to 7, which is used as an input of the function
TimeMin(A, T, a(1)). The resulting matrix B(1) is given in
the column of Tab. II that is labeled with i = 1. The calculated
perfect matching is w(1) = (2, 4, 3, 1), with t(1) = 9. The
current solution (B(1), w(1), a(1), t(1)) is stored into the list L.
Since t(0) = 8 < 9 = t(1), the loop continues to the second
iteration.

On the second iteration, the value of t(1) is the input
parameter of CapacityMax(A, T, t(1)), which results in max-
imal capacity a(2) = 5 (see also Examp. 2), and it is
used as an input of TimeMin(A, T, a(2)). The resulting
matrix B(2) is given in the last column of Tab. II, and
w(2) = (1, 4, 3, 2), t(2) = 8 (see also Examp. 1). The current
solution is stored into the list L. Since t(0) = 8 = t(2), the
loop is terminated, and L contains the solution of Prob. 1,
L = {(B(1), w(1), a(1), t(1)), (B(2), w(2), a(2), t(2))}.

The solution of the Prob. 1 in Examp. 3 gives a detailed
characteristic of the Pareto optimal solutions. Indeed:

1) All Pareto optimal solutions are grouped in two classes
(P1 and P2) of equivalent Pareto optimal solutions,
because |L| = 2. The equality (1) is fulfilled with
m = 2.

2) The second element of each solution stored in L is a
Pareto optimal solution from the corresponding class. In
this particular case, w(1) ∈ P1 and w(2) ∈ P2. This
observation shows that Alg. 3 also separates one Pareto
optimal MCS P0. In Examp. 3 P0 = {w(1), w(2)}.

3) The matrix B(i) defines the class Pi, ∀i ∈ {1, 2}.
In the particular Examp. 3 it is directly verified that
per(B(1)) = 1 = per(B(2)) and therefore P = P0.

We illustrate the solution of Examp. 3 on Fig. 1. The Carte-
sian plane is defined by the two criteria capacity c, and time
t. Each point Aw with coordinates (HA(w), GT (w)) denotes
an assignment w. With a white dot we plot each of the points

O

8

9

10

11

t

2 3 4 5

c

Aw

A
δA

δB B

Fig. 1. Plot of the solution of Examp. 3 with capacity criterion c as abscissa,
and time criterion t as ordinate. Black points denote assignments, while white
points denote Pareto optimal solutions

A(HA(w1), GT (w1)) = A(7, 9) and B(HA(w2), GT (w2)) =
B(5, 8) that denote Pareto optimal solutions. The point A(7, 9)
is the vertex of the angle γA = {(c, t) : c ≥ 7 and t ≤ 9}.
The point B(5, 8) is the vertex of the angle γB = {(c, t) :
c ≥ 5 and t ≤ 8}. The angles γA and γB are colored in gray.

As it can be expected, the points A and B are vertices of
the set F = γA ∪ γB , which is colored in gray. From the plot
it is clear that there is no other point Aw, that belongs to F .
This observation illustrates the fact that the assignments w(1)

and w(2) satisfy Def. 2.
We denote the vert. opp. angle of γA with δA = {(c, t) :

c ≤ 7 and t ≥ 9}. The rays of δA are drawn in dashed lines.
Analogously, δB = {(c, t) : c ≤ 5 and t ≥ 8} is the vert.
opp. angle of γB , and its rays are also drawn in dashed lines.

From Def. 3 it follows that an assignment w is dominated
by w(1) exactly when A(HA(w), GT (w)) ∈ δA. Also, w is
dominated by w(2) exactly when A(HA(w), GT (w)) ∈ δB .
Hence, Fig. 1 shows that each assignment is dominated either
by w(1) or by w(2), which illustrates the fact that there are no
other Pareto optimal assignments.

Any 0-1 matrix B(i) that is included in the corresponding
element of the resulting list L of the Alg. 3 defines all perfect
matchings for the i-th solution. In order to extract the list
of perfect matchings from matrices, we adopt the function
ListPM(A, k) that takes as parameters a 0-1 square matrix A
of order n and a natural number k. The result of the function
is a list of perfect matchings Wi in the graph GA with the
following properties:

1) If GA contains more than k− 1 perfect matchings, then
|Wi| = k.

2) If GA contains less than k + 1 perfect matchings, then
Wi stores all of them.

TABLE II
THE MATRIX T0 FOR EACH ITERATION OF ALG. 1 AND THE MATRIX B BEFORE THE LOOP, AND FOR EACH ITERATION OF ALG. 3

T
(1)
0 T

(2)
0 T

(3)
0 0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0


 0 1 0 0

0 0 0 0
1 0 1 0
0 0 0 0


 1 1 0 0

0 0 0 1
1 0 1 0
0 1 0 0


B(0) B(1) B(2) 1 1 0 0

1 0 0 1
1 0 1 0
0 1 0 1


 0 1 0 0

0 1 0 1
1 0 1 0
1 1 0 0


 1 1 0 0

0 0 0 1
1 0 1 0
0 1 0 0



The algorithm of the function ListPM(A, k) is given as Alg.
2 in [14].

Theorem 1: The Alg. 3 is correct.
Proof: The proof is based on the correctness of the

functions TimeMin(A, T, a) and CapacityMax(A, T, t).
Using mathematical induction we prove that each iteration

of the while loop calculates correctly the corresponding ele-
ment (Bj , wj , aj , tj) of the list L. At the same time, we prove
that for each j the sets Pj = {w0 ∈WG : HA(w0) = aj and
GT (w0) = tj} are defined by the corresponding matrices Bj ,
and Pj are sets of Pareto optimal assignments. Besides that,
the following equalities hold:

aj > aj+1 and tj > tj+1, ∀j ∈ N(m− 1), (18)

Wtj = {w ∈WG : HA(w) < aj and
GT (w) < tj} , ∀j ∈ N(m).

(19)

Proposition 3: The computational complexity of Alg. 3 is
O(n

13
2).
Proof: We have proved that both Alg. 1 and Alg. 2 have

computational complexity O(n
9
2). Therefore, each individual

iteration of the while loop has complexity O(n
9
2). The number

of iterations is m, which is the number of elements in
the list S. Besides that, from the definition of the function
TimeMin(A, T, a) it follows that for each k ∈ N(m) there
exists such an element T (ik, jk) of the matrix T , that t(k) =
T (ik, jk). From Th. 1 we know that t(1) > t(2) > . . . > t(m).
Hence, m ≤ n2, which completes the proof.

IV. CONCLUSION

In this paper we solve a biobjective version of the AP
in which the two objective functions are conflicting, and we
look for the set of all Pareto optimal solutions. The examined
problem is the MAXMIN-MINMAX problem in which the
first criteria represents the maximal capacity, while second
criteria represents the minimal time.

The presented Alg. 3 gives a complete description of the
set of all Pareto optimal assignments P . The result contains
a compact representation of each of the sets Pi of equivalent
Pareto optimal assignments. At the same time, if from each
Pi is selected a single element, we will get a MSC of Pareto
optimal assignments. The correctness of Alg. 3 is proved and
its computational complexity is shown. Examp. 3 illustrates
the calculations of Alg. 3 for the example given in (10). The
graphical representation in Fig. 1 is in fact a geometrical proof
of the correctness of the solution of the example.

The functions with corresponding algorithms that imple-
ment them TimeMin(A, T, a) and CapacityMax(A, T, t),
solve the problems for list composition of the corresponding
single criterion problems. The function TimeMin(A, T, 0)
solves the single criterion problem for calculation of all
assignments with minimal time. Analogously, the function
CapacityMax(A, T, t) finds all assignments that have maxi-
mal capacity.

REFERENCES

[1] R. Burkard, M. Dell’Amico, and S. Martello, Assignment problems, ser.
SIAM. University City, Philadelphia: Society for Industrial and Applied
Mathematics, 2009.

[2] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1–2, pp. 83–97, March 1955.

[3] T. Oncan, Z. Şuvak, M. H. Akyüz, and I. K. Altınel, “Assignment
problem with conflicts,” Computers & Operations Research, vol. 111,
pp. 214–229, 2019.

[4] K. Morita, S. Shiroshita, Y. Yamaguchi, and Y. Yokoi, “Fast primal-dual
update against local weight update in linear assignment problem and its
application,” Information Processing Letters, vol. 183, p. 106432, 2024.

[5] S. Dhouib, “An intelligent assignment problem using novel heuristic:
The dhouib-matrix-ap1 (dm-ap1): Novel method for assignment prob-
lem,” International Journal of Intelligent Systems and Applications in
Engineering, vol. 10, no. 1, p. 135–141, 2022.

[6] E. Michael, T. A. Wood, C. Manzie, and I. Shames, “Sensitivity analysis
for bottleneck assignment problems,” European Journal of Operational
Research, vol. 303, no. 1, pp. 159–167, 2022.

[7] D. Tuyttens, J. Teghem, P. Fortemps, and K. V. Nieuwenhuyze, “Per-
formance of the MOSA method for the bicriteria assignment problem,”
Journal of Heuristics, vol. 6, pp. 295–310, 2000.

[8] Y. Ge, M. Chen, and H. Ishii, “Bi-criteria bottleneck assignment prob-
lem,” in 2012 Annual Meeting of the North American Fuzzy Information
Processing Society (NAFIPS), 2012, pp. 1–5.

[9] M. Ehrgott and X. Gandibleux, Multiobjective Combinatorial Optimiza-
tion — Theory, Methodology, and Applications. Boston, MA: Springer
US, 2002, pp. 369–444.

[10] O. Berman, D. Einav, and G. Handler, “The constrained bottleneck
problem in networks,” Operations Research, vol. 38, no. 1, pp. 178–
181, 1990.

[11] S. Geetha and K. Nair, “A variation of the assignment problem,”
European Journal of Operational Research, vol. 68, no. 3, pp. 422–
426, 1993.

[12] P. Hansen, “Bicriterion path problems,” Multiple Criteria Decision
Making Theory and Application, pp. 109–127, 1980.

[13] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on Computing, vol. 2,
no. 4, pp. 225–231, 1973.

[14] L. M. Laskov and M. L. Marinov, “List of selected number of optimal
solutions of the assignment problem by time criterion,” in 2022 Inter-
national Conference Automatics and Informatics (ICAI). IEEE, 2022,
pp. 100–106.

