
List of Selected Number of Optimal Solutions of
the Assignment Problem by Time Criterion

Lasko M. Laskov
Department of Informatics

New Bulgarian University

Sofia, Bulgaria

llaskov@nbu.bg

Marin L. Marinov
Department of Informatics

New Bulgarian University

Sofia, Bulgaria

mlmarinov@nbu.bg

Abstract—In this paper we present a solution of the assignment

problem with an algorithm with complexity O(n
9

2). The discussed
algorithm allows an effective approach for generation of a list
of selected number of optimal solutions of this problem. If it is
predefined that the list does not contain more than n0 number
of optimal solutions, then the proposed algorithm has complexity

ñO(n
9

2), where ñ = min{n0, n1} with n1 being the number of
perfect matchings in the graph. The method is based on the
Hopcroft-Karp algorithm for maximum matching in a bipartite
graphs [16].

Index Terms—combinatorial optimization algorithms, assign-
ment problem, time criterion, matchings in graph

I. INTRODUCTION

The assignment problem (AP) is a fundamental research

topic in the field of combinatorial optimization [2]. It deals

with the problem how to assign n number of tasks (problems,

projects, computational problems) to n number of agents

(workers, companies, machines). The AP can be found in var-

ious scientific fields, including economics, machine learning

[17], and distributed computer systems [20], [19].

While the naive solution of the AP leads to the unfeasible

factorial complexity, it has been proved that the problem is

NP-hard, and the first known work to propose a polynomial

solution [11] introduces the well-known Hungarian algorithm.

Since then many improvements and versions [12], [19] and

applications (see for example [7]) of the algorithm has been

proposed. Some of these works even lead to discovery of

important data structures, for example the work [5] introduces

the Fibonacci heap.

An important category of methods is based on the graph

theory [10]. They represent the AP in the terms of weighted

bipartite graphs, and look for solutions by searching for

matchings (see [16]). More recent works investigate the AP in

the terms of network flows [1], by even solving the unbalanced

version of the problem in which the number of agents and tasks

are not equal.

Another type of AP occur when algorithms also aim to

minimize the latest competition time [6]. In literature it is

sometimes referred to as linear bottleneck assignment problem

[3], [18], and the proposed solutions again are based on

weighted bipartite graphs.

In this paper we will present two versions of the assignment

problem minimizing the time criterion. In Sect. II we will

formulate the time criterion assignment problem (TCAP), and

we will show an algorithm that finds one optimal solution. In

Sec. III we will show how a list of optimal solutions of the

TCAP can be generated.

II. TIME CRITERION ASSIGNMENT PROBLEM

In this section we will present the time criterion assignment

problem (TCAP). First we will give definition of the problem,

and then we will discuss the calculation of one optimal

solution.

A. Problem statement

A given project is being defined as the execution of n
independent tasks. For the execution of the tasks, n agents

apply. The agent i can execute the task j for time tij ,

where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}. We assume

that the time matrix T (tij) is preliminary defined. Every

task must be executed by a single agent, and every agent

can execute a single task. We will represent the admissible

plans for assignment of the tasks to different agents with the

permutations of the first n natural numbers.

The permutation

w =

(
1 2 · · · n
j1 j2 · · · jn

)

will be denoted with the shorter w = (j1, j2, . . . , jn). Also,

we denote w(i) = ji, ∀i ∈ {1, 2, . . . , n}.
The choice of the plan w shows that the agent i has been

assigned the task w(i). The time for the execution of the plan

w is:

GT (w) = max{T (1, w(1)), . . . , T (n,w(n))},

where T (i, j) is the element of the matrix T , located on the

i-th row and the j-th column.

Definition 1 (Optimal plan): The plan w̃ is called an optimal

plan, when for each plan w holds the inequality GT (w̃) ≤
GT (w).

Then the TCAP can be defined:

Problem 1 (TCAP): For an arbitrary time matrix T , find an

optimal solution w.
978-1-6654-7625-6/22/$31.00 ©2022 IEEE

A special feature of the Problem 1 is that the function

GT (w) is not linear.

It is obvious that in the case in which n is a relatively small

number, the problem can be solved using a brute-force method.

In this case all possible plans w are examined, resulting in n!
number of comparisons, and making the approach unfeasible

for a standard computer system in the cases in which n > 13.

A branch-and-bound method (see [14], [9] and more re-

cent [13], [15], [4]) is another possible approach. Since an

algorithm that incorporates the branch-and-bound technique

will have an exponential complexity O(2n), it is a possible

solution in the cases is which n ≤ 25.

In this work we use the algorithm of Hopcroft and Krap [16]

for maximum matchings in bipartite graphs, which allows us

to present a more effective solution of the TCAP.

For our purposes it will be more convenient to formulate the

Problem 1 with a full weighted bipartite graph G(X,Y,E, t),
where X = {1, 2, . . . , n}, Y = {1, 2, . . . , n}, E = {{i, j} :
i ∈ X, j ∈ Y }, and the function t that maps to each edge

{i, j} the number tij , i.e. t({i, j}) = T (i, j). Then each plan

can be represented as a perfect matching and vice versa.

We will denote a perfect matching

{{1, j1}, {2, j2}, . . . , {n, jn}} using the permutation

w = (j1, j2, . . . , jn). Then we will call a perfect matching w̃
an optimal perfect matching, when for each perfect matching

it holds GT (w̃) ≤ GT (w). Now the TCAP can be defined in

the terms of perfect matching in G(X,Y,E, t):

Problem 2 (TCAP): For an arbitrary full weighted bipartite

graph G(X,Y,E, t), find an optimal perfect matching.

When solving the Problem 2, we will assume that the graph

G(X,Y,E, t) is defined with the time matrix T (tij).

We will note that our goal is the problem for the compo-

sition of a list of selected number of optimal solutions (Sec.

III). However, for its representation we need the solution of

Problem 2.

B. Find one optimal solution

For the purposes of the solution of the Problem 2 we will use

a special finite unweighted bipartite graphs sequence (UBGS)

Gk(X,Y,Ek), where X = {1, 2, . . . , n}, Y = {1, 2, . . . , n},
E0 = ∅ and Ek ⊂ Ek+1. The sets Ek are defined by induction

using the following procedure, which we will call under the

sequence.

Procedure 1 (UBGS): Using mathematical induction we

define the following procedure for generation of UBGS.

The input of the procedure is the weighted bipartite graph

G(X,Y,E, t) with an arbitrary adjacency matrix of weights

T (tij) of order n. Initially, we will denote with V all weights

of the edges contained in the matrix T , in other words

V = {tij : i ∈ X, j ∈ Y }. We shall say that an edge {i, j}
is blocked when tij ∈ V . When an edge tij /∈ V , we shall

call {i, j} a free edge. On the k-the step of the procedure

all free edges are stored in Ek and they are the edges of the

unweighted graph Gk.

a) Step 0: All edges are blocked, and E0 = ∅, because

there are no free edges. The adjacency matrix of the unweighed

bipartite graph G0(X,Y,E0) is the zero matrix of order n.

b) Step 1: We calculate the minimal weight in V , m1 =
min{V }, and define as blocked edges all edges {i, j} for

which tij > m1. All the other edges are defined as free edges

and are included in the adjacency matrix of the unweighted

bipartite graph G1(X,Y,E1), A1 such that:

a
(1)
ij =

{
0, if tij > m1

1, otherwise.

We update the set V by removing all edges {i, j} ∈ E1. Then

V = {tij : tij > m1}.

c) Step 2: We calculate the minimal weight in the

updated V , m2 = min{V }, and then define all free edges

{i, j}, for which tij ≤ m2, and denote the set of the free edges

with E2. The adjacency matrix of the unweighted bipartite

graph G2(X,Y,E2) is A2, and it has elements:

a
(2)
ij =

{
0, if tij > m2

1, otherwise.

Again, we update the set V by removing all free edges from

it, and we get V = {tij : tij > m2}.

d) Induction step: After the step k of the inductive

procedure, let us define the number mk, the unweighted

bipartite graph Gk(X,Y,Ek), the adjacency matrix Ak, and

the set V of those elements tij for which tij > mk. The

following two cases are possible:

1) V = ∅. In this case all edges are free and the adjacency

matrix Ak has elements a
(k)
ij = 1 for all i and j. We set

k0 = k and the procedure stops.

2) V 6= ∅. In this case the inductive procedure continues.

We calculate mk+1 = min{V }, we define the free edges

{i, j} for which tij ≤ mk+1, and the set Ek+1 =
{{i, j} : tij ≤ mk+1}. The adjacency matrix Ak+1

of the unweighed bipartite graph Gk+1(X,Y,Ek+1) has

elements:

a
(k+1)
ij =

{
0, if tij > mk+1

1, otherwise.

The set V is updated V = {tij : tij > mk+1}.

�

Proposition 1: If we apply the UBGS procedure to an arbi-

trary square matrix T (tij) of order n, the following properties

hold.

1) For all numbers mk and mk+1 that are calculated with

UBGS, mk < mk+1.

2) UBGS stops after the step k0, where k0 ≤ n2.

3) Ek+1 = Ek ∪ {{i, j} : tij = mk+1} for each k ∈
{0, 1, . . . , k0 − 1}.

4) For each element tij of the matrix T exists an index

k ∈ {1, 2, . . . , k0} for which mk = tij .

The proof of Proposition 1 follows directly from the defi-

nitions of mk and Ek. Hence, for an arbitrary matrix T (tij)
the UBGS Procedure 1 defines the finite sequences:

m1 < m2 < · · · < mk0
(1)

A1, A2, . . . , Ak0
(2)

G1(X,Y,E1), G2(X,Y,E2), . . . , Gk0
(X,Y,Ek0

), (3)

where Ak has the following elements:

akij =

{
1, if tij ≤ mk

0, if tij > mk

and is the adjacency matrix of the graph Gk(X,Y,Ek).
Now we will introduce a procedure that verifies whether an

unweighted bipartite graph has a perfect matching (PM).

Procedure 2 (PM): For an arbitrary square matrix Z with el-

ements equal to 0 or 1, the procedure verifies if the unweighted

bipartite graph GZ with adjacency matrix Z has a perfect

matching. The procedure calculates the pair {ind, w0}, where

ind =

{
0, if GZ does not have a perfect matching

1, if GZ has a perfect matching.

If ind = 1, then w0 is a perfect matching of GZ .

The procedure PM is implemented using the Hopcroft-Krap

algorithm [16]. In this case the complexity of PM is evaluated

O(n
5

2). Of course, for the implementation other algorithms

can be used as well: for example the algorithm of Kuhn

[11], however in this case the complexity will be O(n3). The

improvement of the complexity of the procedure PM, improves

the complexity of the presented algorithm in which PM is used,

as it is shown in Proposition 3.

We will solve the Problem 2 with the Algorithm 1. It

takes as an input the adjacency matrix T (tij) of order n
with the weights of the graph G(X,Y,E, t). The output of

the algorithm is one optimal perfect matching w0. The set of

blocked edges is stored in an array v that has n2 elements,

where each element is composed by the pair of weight tij and

its corresponding indexes (i, j) in the matrix T (tij). Since v
is one-dimensional, the correspondence between its index and

the indexes of T (tij) is given by s = (i − 1)n + j, and thus

v(s) = (v(s, 1), v(s, 2)), where v(s, 1) = tij , v(s, 2) = (i, j).
We denote the zero square matrix of order n by 0n×n, and

by v = [v]q0 we denote the removal of the elements from v
which are placed on positions q0(i) for each i.

Additionally, we will use the following variables to store

the current record of the algorithm:

• r0 stores the minimum weight in the array v;

• the list v0 stores on which locations of T there are

elements that are equal to r0;

• the list q0 stores on which locations of v there are

elements that are equal to r0.

Proposition 2: Algorithm 1 is correct.

Proof. It is clear that each iteration of the loop with a counter

k0 implements one step from the inductive procedure. In this

Algorithm 1 Time criterion assignment problem (TCAP).

Input: T (tij)
Output: an optimal perfect matching w0

k0 ← 1
while k0 > 0 do

vr ← v
r0 ← v(1, 1)
v0 ← {}, q0 ← {}
q ← 0, k ← |vr|
A0 ← 0n×n

while k > 0 do

w ← vr(1)
vr ← vr \ {vr(1)}
k ← k − 1, q ← q + 1
if w(1) < r0 then

r0 ← w(1), v0 ← {w(2)}, q0 ← {q}
else if w(1) = r0 then

v0 ← v0 ∪ {w(2)}, q0 ← q0 ∪ {q}
end if

end while

for k1 ← |v0| to 1 do

v1 ← v0(1), v0 ← v0 \ {v0(1)}
A0(v1(1), v1(2))← 1

end for

{ind, w} ← PM(A0) {using Procedure 2}
if ind = 0 then

v ← [v]q0 {remove elements on locations q0(i)}
k0 ← |v|

else

w0 ← w
break{solution found, terminate the main loop}

end if

end while

manner, the loop consecutively calculates the elements of the

sequences (1), (2) and (3). The loop stops when a graph GA0

is found that belongs to the sequence (3) and contains a perfect

matching. Apparently, if GA0
= G

k̃
, the following holds.

• If i < k̃, then the graph Gi does not have perfect

matchings.

• If i ≥ k̃, then the graph Gi has perfect matchings.

Also, the following statements hold.

1) Every perfect matching of GA0
is an optimal perfect

matching in the graph G(X,Y,E, t).
2) Every optimal perfect matching of G(X,Y,E, t) is a

perfect matching in the graph GA0
.

Indeed, let us suppose that w̃ is a perfect matching of GA0
=

G
k̃
. Then:

GT (w̃) = m
k̃
. (4)

Now, let w be a perfect matching of the graph G(X,Y,E, t)
with adjacency matrix T (tij). With i0 we denote the index for

which

ti0w(i0) = max
{
tiw(i) : i ∈ {1, 2, . . . , n}

}
= GT (w) (5)

By its construction, the graph G
k̃−1(X,Y,E

k̃−1) has no

perfect matching. Then ti0w(i0) > m
k̃−1, and hence,

ti0w(i0) ≥ min{V } = m
k̃
, (6)

where V = {tij : tij > m
k̃−1}. From the inequalities (5), (6)

and (4) it follows that

GT (w) = ti0w(i0) ≥ m
k̃
= GT (w̃).

Let ŵ is a perfect optimal matching in the graph G(X,Y,E, t).
Then GT (ŵ) ≤ k̃ because there is a perfect matching w0, for

which GT (w0) = k̃.

If we assume that GT (ŵ) < m
k̃
, then ŵ must be a

perfect matching of G
k̃−1(X,Y,E

k̃−1). However, this is a

contradiction with the definition of k̃. Hence we have proven

that GT (ŵ) = m
k̃
.

�

Proposition 3: The complexity of Algorithm 1 is O(n
9

2).
Proof. From Proposition 2 we know that the Algorithm 1

finds the solution of Problem 2 after no more than k0 number

of iterations, where k0 ≤ n2. During each iteration, there is a

single call to the PM procedure, and additional calculations

with complexity O(n2). This shows that each iteration of

the algorithm performs O(n
5

2) number of calculations. From

here it follows that the entire complexity of the algorithm is

n2O(n
5

2) = O(n
9

2).

III. LIST OF OPTIMAL SOLUTIONS

In this section we will focus on the generation of a list

of optimal solutions (LOS) of TCAP. For this purpose we

formulate:

Problem 3 (LOS): For an arbitrary weighted bipartite graph

G(X,Y,E, t) and an arbitrary natural number n0, generate

a list L of optimal perfect matchings with the following

properties:

1) If the TCAP Problem 2 has more than n0 − 1 optimal

matchings, then L contains n0 elements.

2) If the TCAP Problem 2 has less than n0 optimal match-

ings, then L contains all optimal matchings.

We will note that the purpose of this work is to find the so-

lution of Problem 3. However, to formulate the corresponding

algorithm, we use the solution of Problem 2 in combination

with the solution of the helper Problem 4 (given below) for

finding of a list of perfect matchings in an unweighted bipartite

graph (LPMUBG).

Problem 4 (LPMUBG): Let the unweighted bipartite graph

G(X,Y,E) has an adjacency matrix A with elements A(i, j)
that are equal either to 0 or 1. For an arbitrary natural number

n0 we will generate a list L of perfect matchings in the graph

G that has the following properties:

1) If G has more than n0 − 1 perfect matchings, then L
contains n0 elements.

2) If G has less than n0 perfect matchings, then L contains

all perfect matchings.

For the solution of the Problem 4 we will use again the

Procedure 2 (PM). Using it we will check whether the graph

G has perfect matchings. If G has no perfect matchings, we

will set L = ∅, and the problem is solved. That is why we

will assume that G has at least one perfect matching. In this

case, using PM we calculate one perfect matching v.

Let us formulate the Problem 4 using the array X0 =
{w, v,B, n}, where:

• w = () is a sequence;

• v is one perfect matching in the graph G(X,Y,E);
• B is a matrix of the type (n+ 1)× n with elements

B(i, j) =

{
A(i, j), if i ∈ X and j ∈ Y

j, if i = n+ 1 and j ∈ Y.
(7)

We will reduce the solution of Problem 4 to the solution of

a number of subtasks with reduced size, in which we will look

for a single solution. After that, we will apply the procedure

PM to each of theses subtasks, and the problem is solved. The

set of subtasks will be generated by branching of the original

problem.

Apart from the previously introduced notations, we will use

also the following additional terms. If X = {1, 2, . . . , n} = Y ,

then [X]1 = {2, 3, . . . , n}, [Y]j = {1, 2, . . . , (j − 1), (j +
1), . . . , n}. For an arbitrary matrix B, we denote with

[B]i1,i2,...,ikj1,j2,...,jk

the sub-matrix that is received from B by removing of the

rows with indexes i1, i2, . . . , ik and columns with indexes

j1, j2, . . . , jk.

It is clear that if A is a square matrix of order n, then

[A]1j (p, q) = A(1 + p, fj(q)), where

fj(q) =

{
q, if q < j

q + 1, if q ≥ j
(8)

and both p and q ∈ {1, 2, . . . , (n− 1)}.
The following procedure describes one branching step (BS).

Procedure 3 (BS): Suppose that the graph G(X,Y,E)
contains at least one perfect matching, and Problem 4 is

formulated using the array X0 = {w, v,B, n}. Then we apply

branching on X0 in the following way.

1) For each j ∈ Y that satisfies the condition A(1, j) = 1,

we define:

a) A = [B]n+1 and Aj = [A]1j ;

b) the graph Gj(X1, Y1, Ej), where

X1 = {1, 2, . . . , n − 1} = Y1 and

Ej = {{p, q} : Aj(p, q) = 1, p ∈ X1, q ∈ Y1}.

2) For each j ∈ Y , that satisfies the conditions A(1, j) = 1,

and the graph Gj has at least one perfect matching, we

define the problem Xj = {wj , vj , Bj , n − 1}, where

wj = (j), Bj = [B]1j and vj is calculated in the

following way:

a) using the procedure PM for Z = Aj we find

perfect matching w̃ = (j̃1, j̃2, . . . , j̃n−1) in the

graph Gj(X1, Y1, Ej);
b) we define vj = (j, fj(j̃1), fj(j̃2), . . . , fj(j̃n−1)),

where fj(q) is defined with the equation (8).

After the branching step of X0 is completed, we define r
number of problems:

Xjs = {wjs , vjs , Bjs , n− 1}, s ∈ {1, 2, . . . , r}.

It is clear that 0 < r ≤ n. Without loss of generality we can

consider that 0 < j1 < j2 < · · · < jr.

Algorithm 2 List of perfect matchings in an unweighted

bipartite graph (LPMUBG).

Input: adjacency matrix A, and a natural number n0

Output: list of perfect matchings L
L is a list, Q is a queue

{ind, w0} ← PM(A) {using Procedure 2}
if ind = 0 then

return ∅ {returns an empty list}
else

X0 = {(), w0, B, n} {see equation (7)}
enqueue(Q, {X0})
while |Q| > 0 and |L|+ |Q| < n0 do

{w, v,B, k} ← front(Q), dequeue(Q)

if k > 2 then

for j ← 1 to k do

if B(1, j) = 1 then

w1 ← w1 ∪ {B(k + 1, j)}
B1 ← [B]1j
{a, b} ← PM([B1]

k)

if a = 1 then

b(s)← B1(k, b(s)), ∀s ∈ {1, 2, . . . , k − 1}
v1 ← w1 ∪ b
enqueue(Q, {w, v1, B1, k − 1})

end if

end if

if |L|+ |Q| ≥ n0 then

j ← k + 1
end if

end for

else

push(L, {v})
if A(n− 1, v(n))A(n, v(n− 1)) = 1 then

v1 ← v, v1(n− 1)← v(n), v1(n)← v(n− 1)
push(L, {v1})

end if

end if

end while

if |Q| > 0 then

for i← 1 to n0 − |L| do

push(L, {Q(i, 2)})
end for

end if

end if

Based on the Procedure 3 (BS) we can now formulate

Algorithm 2 (given below) for solving the LPMUBG problem.

We denote with Q the queue of problems to be branched.

With |Q| we denote the number of elements in Q. During

the iterations we will fill the list L, while its current number

of elements is denoted with |L|. With enqueue(), dequeue(),

front() and push() we denote the standard operations of the data

structures queue and list. The general steps of the algorithm

are illustrated in the flowchart in Fig. 1.

A, n0

|A| has no

perfect match
∅

define B with (7),

list L and queue Q

|Q| > 0 and

|L| + |Q| < n0

{w, v,B, k} ←
front(Q),

dequeue(Q)

k > 2
fill in L with a

direct verification

for j = 1, . . . , k,

call PM([B]1,kj) if

B(1, j) = 1 and

a = 1 enqueue in Q

|L| + |Q| ≥ n0

|Q| > 0

fill in L with

n0 − |L| number of

perfect matchings

from different

elements of Q

L

yes

no

yes

no

no

yes

yes
no

yes

no

Fig. 1. Flowchart of the LPMUBG algorithm.

Theorem 1: The Algorithm 2 is correct and has complexity

ñO(n
9

2), where ñ = min{n0, n1}, and n1 is the number of

perfect matchings in the graph G(X,Y,E).
Since we now dispose of an effective solution of Problem

4, the solution of Problem 3 is obtained using the following

Algorithm 3.

Algorithm 3 List of optimal solutions (LOS) of TCAP.

Input: adjacency weights matrix T (tij) of G(X,Y,E, t) , and

a natural number n0

Output: list of optimal solutions L of TCAP

{w0, A0} ← TCAP(T (tij)) {Algorithm 1}
L← LPMUBG(A0, n0) {Algorithm 2}

The correctness of the Algorithm 3 follows from the cor-

rectness of Algorithm 1 and Algorithm 2. Besides that, its

complexity is ñO(n
9

2), where ñ = min{n0, n1} and n1 is the

number of perfect matchings in the graph G(X,Y,E). The

latter follows from the fact that the complexity of Algorithm

1 is evaluated O(n
9

2), and the complexity of Algorithm 2 is

evaluated ñO(n
9

2).

We will illustrate the described LOS algorithm with the

following examples, based on the weight matrix T of order

15 given in equation (9) below.




24 26 42 15 29 25 35 23 19 25 25 25 15 18 25

7 14 16 1 30 25 7 11 21 20 12 11 10 11 20

20 13 15 35 5 1 26 6 16 15 15 8 13 22 15

21 16 25 20 18 18 6 46 25 23 26 5 31 9 23

12 46 27 48 28 5 67 13 23 27 14 35 21 32 27

23 5 5 9 5 19 32 42 32 19 22 23 19 18 19

35 7 26 6 67 32 21 11 15 21 21 12 16 17 21

5 23 65 10 16 67 57 28 32 18 18 21 27 23 18

8 11 25 35 11 21 17 21 21 24 22 20 23 35 24

11 25 11 21 17 21 24 22 24 20 21 17 19 30 19

25 9 12 15 26 14 22 21 18 21 19 26 21 16 21

26 42 15 29 25 35 23 19 25 25 25 24 31 13 16

26 6 16 15 15 8 13 22 15 25 25 22 18 26 25

6 46 25 23 26 5 31 9 23 20 12 32 32 22 23

67 13 23 27 14 35 21 32 27 15 15 25 25 16 25




(9)

Example 1: Let us solve Problem 2 with the input weight

matrix T , given in equation (9). Applying Algorithm 1 we get

one perfect matching:

w0 = (13, 8, 15, 12, 11, 5, 9, 4, 2, 3, 6, 14, 7, 1, 10),

and minimal time r0 = 15. It can be directly verified that

GT (w0) = 15.

Example 2: Let us solve Problem 3 with the input weight

matrix T , given in equation (9). We will solve the problem

for two different values of n0: n0 = 3 and n0 = 270.

1) In the case in which n0 = 3 we get the list

L = {(4, 13, 15, 12, 11, 2, 9, 1, 5, 3, 6, 14, 7, 8, 10),

(13, 1, 15, 12, 11, 2, 9, 4, 5, 3, 6, 14, 7, 8, 10),

(13, 2, 15, 12, 11, 3, 9, 4, 5, 1, 6, 14, 7, 8, 10)}.

2) In the case in which n0 = 270 we get a list with 240
elements. This means that the problem has exactly 240
optimal solutions for this particular example.

With a direct verification we can assert that GT (w) = 15 for

each w ∈ L that corresponds to the solution of Example 1.

IV. CONCLUSION

The implementation of Algorithm 1 is verified using ex-

ample matrices of order n < 8, for which Problem 2 is

already solved using the existing methods. For the valida-

tion of Algorithm 2, we solve Problem 3 using a greedy

method. Most of our experiments are with matrices of order

n ∈ {30, 31, . . . , 50}, in which the implementations of both

Algorithm 1 and Algorithm 2 proof their effectiveness. On

the other hand, in the cases in which n = 50 and n0 is big

enough, the time consumed by the solution of Problem 3 grows

significantly. In these cases we plan to incorporate parallel

computing techniques [8] in our implementation. Also, the

presented approach for solving Problem 3 allows us to solve

the problem for generation of a list of optimal solutions of the

problem for minimum time with maximum profit.

REFERENCES

[1] R. K. Ahuja, J. B. B. Orlin, C. Stein, R. E. Tarjan, “Improved algorithms
for bipartite network flow,” SIAM Journal on Computing, vol. 23, no.
5, 1994, pp. 906–933.

[2] R. E. Burkard, “Selected topics on assignment problems,” Discrete
Applied Mathematics, vol. 123, iss. 1–3, 2009, pp. 257–302.

[3] R. E. Burkard, M. Dell’Amico, S. Martello, “Assignment problems,”
Society for Industrial and Applied Mathematics, 2002.

[4] K. Flezar, “A branch-and-bound algorithm for the quadratic multiple
knapsack problem,” European Journal of Operational Research, vol. 298,
iss. 1, 2021, pp. 89–98.

[5] M. L. Fredman, R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” Journal of the ACM, vol.
34, no. 3, 1987, pp. 596–615.

[6] D. R. Fulkerson, I. Glicksberg, and O. Gross, “A production line
assignment problem,” Tech. Rep. RM-1102, The Rand Corporation,
Santa Monica, CA, 1953.

[7] B. Gabrovšek, T. Novak, J. Povh, D. R. Poklukarm J. Žerovnik,
“Multiple Hungarian Method for k-Assignment Problem,” Mathematics,
vol. 8, no. 11, 2020, pp. 1–18.

[8] W. Gropp, E. Lusk, and A. Skjellum, “Using MPI: portable parallel
programming with the message-passing interface,” The MIT Press, 2014.

[9] R. Horst, “Global optimization: deterministic approaches,” Springer-
Verlag, Berlin Heidelberg, 1996, pp. 115–178.

[10] J. B. Jensen, G. Z. Gutin, “Digraphs theory algorithms and applications,”
Springer Publishing Company, 2008.

[11] H.W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol 2, 1955, pp. 83–97.

[12] H.W. Kuhn, “Variants of the Hungarian method for assignment prob-
lems,” Naval Research Logistics Quarterly, vol 3, no. 4, 1956, pp. 253–
258.

[13] Ö. Karsu, M. Azizoglu, “An exact algorithm for the minimum squared
load assignment problem,” Computers & Operations Research, vol 106,
2019, pp. 76–90.

[14] A. H. Land, and A. G. Doig, “An automatic method of solving discrete
programming problems,” Econometrica, vol. 28, no. 3, 1960, pp. 497–
520.

[15] J. Niebling, E. Gabriele, “Branch–and–Bound-based algorithm for non-
convex multiobjective optimization,” SIAM Journal on Optimization, vol
29, 2019, pp. 794–821.

[16] J. E. Hopcroft, and R. M. Krap, “An n
5/2 algorithm for maximum

matchings in bipartite graphs,” SIAM Journal on Computing, vol. 2, no.
4, 1973, pp. 225–231.

[17] P.-E. Sarlin, D. DeTone, T. Malisiewicz, A. Rabinovich, “Super-
Glue: Learning Feature Matching with Graph Neural Networks,” 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 4937–4946.

[18] M. Z. Spivey, “Asymptotic moments of the bottleneck assignment
problem,” Mathematics of Operations Research, vol. 36, no. 2 , 2011,
pp. 205–226.

[19] K. Shah, P. Reddy, S. Vairamuthu, “Improvement in Hungarian algo-
rithm for assignment problem,” In: Suresh, L., Dash, S., Panigrahi, B.
(eds) Artificial Intelligence and Evolutionary Algorithms in Engineering
Systems. Advances in Intelligent Systems and Computing, Springer, vol.
324, 2015, pp. 1–8.

[20] C. C. Shen and W. H. Tsai, “A graph matching approach to optimal task
assignment in distributed computing systems using a minimax criterion,”
IEEE Transactions on Computers, vol. C-34, no. 3, 1985, pp. 197–203.

