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Abstract. One of the fundamental problems in the disciplines of combi-
natorial optimization and operation research is the assignment problem
(AP). Even though the AP and its variants has been explored exten-
sively in the specialized literature, most of the resources are focused on
the calculation of a single optimal solution. In this paper we propose an
approach that generates a list of optimal solutions.
We focus on the bi-criteria variant of the AP in which two objectives are
minimized: cost and time. Our approach finds the maximal subset of as-
signments that are Pareto optimal, and have minimal cost. In particular,
the method finds a list of all assignments that are optimal with respect
to the cost criterion.
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1 Introduction

The assignment problem (AP) [5] is a fundamental problem in the fields of
combinatorial optimization and operation research [22], [11], [24]. It has been
explored since the middle of the 20th century [9], [15], [16], and continued to
be in the focus of investigations [20], [27], [1]) with the progress of information
technologies and computer science until now-a-days (see for example [4], [14],
[8]). The applications of AP are numerous, and can be found in many scientific
disciplines such as economics [10], data science, machine learning and pattern
recognition [23], distributed computer systems [26], [25], and many others.

In its basic form, the AP can be formulated as the problem of finding an
assignment of n tasks (jobs, projects, processes) to n other agents (workers,
companies, processors) that is efficient according to a certain formal criterion.
Most commonly the criterion is to minimize the total cost of the proposed plan.
In the above informal definition the number of tasks and agents is equal, and in
this case the AP called balanced. In the case in which the number of tasks and
agents differ, the AP is said to be unbalanced [5].

The naive solution of AP results in a full exhaustion algorithm that leads
to unfeasible factorial complexity O(n!), which makes the problem hard to solve
even for relatively small values of n. However, different algorithms exist that solve
the AP in polynomial time, with the first known such method called Hungarian
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algorithm published in 1956 in the famous work of Kuhn [15], and an year
latter extended to its variants in [16]. The computational complexity of the
initial version of the Hungarian algorithm was O(n4) which latter is shown that
can be improved to O(n3) [28], [7]. Different versions and improvements of the
Hungarian algorithm continue to be a subject of research in more recent works
(see for example [25], [8]).

A whole section of methods treat AP as a network flow problem [7], [1] and
adopt the tools of graph theory [2], [6] to find an efficient solution. Most of the
methods in this category bring the AP to the problem of searching for matchings
in bipartite graphs [12], [26].

At the same time, a global optimization technique known as branch & bound
(see [17], [13], [19]) has been shown to lead to efficient solutions to other combi-
natorial optimization problems such as the Travelling Salesman Problem (TSP)
(see [21], [18]), and some versions of the knapsack problem [8].

Most of the existing methods and algorithms in the literature aim to find
an efficient approach to find a single optimal solution of the AP. The main
goal of this paper is to present an effective approach for composition of a list
of all assignments that have minimal cost and satisfy an additional condition.
This approach is presented with a solution of the AP in the case in which two
independent optimization criteria are defined: time and cost. The main problem
is brought to finding of the maximal subset of Pareto optimal solutions that have
minimal cost.

The paper is organized as follows. In Sec. 2 we introduce the main notations
and definitions. In Sec. 3 we present the solution of the main problem. In Sec.
4 we solve the problem for description of all solutions of the AP. The solution
follows from the presented approach in Sec. 3. Finally, Sec. 5 contains discussion
of the presented methods and conclusions.

2 Main notations and definitions

In this section we will introduce the basic notations.
With N(n) = {1, 2, . . . , n} we denote the set of the first n natural numbers,

for each natural number n. With Pn we denote the permutations of the first n
natural numbers. We denote the permutation

w =

(
1 2 · · · n
j1 j2 · · · jn

)
(1)

with the shorter w = (j1, j2, . . . , jk). Also, w(s) = js, ∀s ∈ N(n).
Let B is an arbitrary matrix. With B(i, j) we denote the element of B on

the ith row and jth column. We denote with

[B]i1,i2,...,ikj1,j2,...,js
(2)

the sub-matrix that results from B after we delete the rows with indexes i1, i2,
. . . , ik, and columns with indexes j1, j2, . . . , js.
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For an arbitrary square cost matrix A of order n and an arbitrary permuta-
tion w ∈ Pn, we define the cost function:

FA(w) =

n∑
i=1

A(i, w(i)). (3)

Similarly, for an arbitrary square time matrix T of order n and an arbitrary
permutation w ∈ Pn, we define the time maximization function:

GT (w) = max
i∈N(n)

{T (i, w(i))} . (4)

The function t assigns to each variation w = (j1, j2, . . . , jk), k ∈ N(n) of the
first n natural numbers the number

t(w) = max{T (1, j1), T (2, j2), . . . , T (k, jk)}.

It is clear that when k = n, t(w) = GT (w).

2.1 Main problem

Let n independent tasks must be distributed among n agents. The agent i can
execute the task j for time tij that results in costs aij , i, j ∈ N(n). The objective
is to find the maximal set of plans that are executed for minimal cost, and for
shortest possible time.

Let the cost matrix A(aij) and the time matrix T (tij) are predefined square
matrices of order n.

We will call each permutation w ∈ Pn a plan.

Definition 1. We will call an optimal plan each plan w̃, for which the follow-
ing equalities hold:

FA(w̃) = r0 and GT (w̃) = t0

where:
r0 = min{FA(w) : w ∈ Pn}, t0 = min {GT (w) : w ∈ Pn and FA(w) = r0}.

Now let us define the two sets:
W = {w ∈ Pn : FA(w) = r0} and V = {w ∈ W : GT (w) = t0}.

Definition 2. The plan ŵ is called Pareto optimal when there does not exist
a plan w, for which one of the following holds:

– FA(w) < FA(ŵ) and GT (w) ≤ GT (ŵ), or
– FA(w) ≤ FA(ŵ) and GT (w) < GT (ŵ).

Remark 1. The set V of all optimal plans is the set of all Pareto optimal solutions
that have minimal cost r0.

Now the main problem that we will call Minimum Cost for Minimum Time
(MCMT) is defined in the following way.
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Problem 1 (MCMT). For arbitrary square matrices A and T of the same order,
and an arbitrary chosen natural number n0, compile a list S0 of optimal plans
with the following properties.

1. If more than n0 − 1 optimal plans exist, then S0 contains n0 elements.
2. If the optimal plans are less than n0, then S0 contains all the optimal plans.

To solve the MCMT problem, we will use the procedure H and the function
T .

With H we denote the procedure that for an arbitrary square matrix M of
order k calculates the pair {r0, w0}, where r0 = min

w∈Pk
{FM (w)}, w0 ∈ P k and

FM (w0) = r0. In our implementations of H, we use the Hungarian algorithm
[15], [28], [7] to solve the classical AP with computational complexity O(n3).

With T we denote the function

T (M) = max{max{Mr}, max{Mc}}, (5)

where Mr is the set of row minima of M and Mc is the set of column minima of
M .

3 Solution of MCMT problem

The challenging feature of the MCMT problem is that the optimal plan is de-
termined by two criteria:

– the cost criterion, for which the function FA is minimized;
– the time criterion, for which the function GT is minimized.

Moreover, the function GT is not a linear function, and for that reason the whole
problem is nonlinear.

3.1 General structure of the solution

Step 1. Calculate a plan w0 that is executed with a minimal cost. Define:

– minimal cost r0 = FA(w0);
– the current record S0 = {} and t0 = GT (w0).

Step 2. Define the stack S = {X0}, where X0 is storage of the initial problem.

Step 3. While S ̸= ∅, update t0 and S0.
When the loop from Step 3 completes, S0 stores the solution of the MCMT

problem, and t0 stores the minimal time.
In Step 1 of the solution, the procedure H applied on Z = A calculates the

minimal possible cost r0 and a plan w0, for which FA(w0) = r0. Also, the initial
record is defined t0 = GT (w0).
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We store the sub-problems that result from the branching process in Step 3
in a list of the form {w,B,Bt, k, dt}, where w is a vector; B and Bt are matrices,
and k, dt are special numbers.

The initial problem is stored with X0 = {w,B,Bt, k, dt} where: w = ( ) = ∅;
Bt = T ; dt = T (Bt); k = n and B is a (n+ 1)× n matrix with elements

B(i, j) =

{
A(i, j), if i ∈ N(n) and j ∈ N(n)

j, if i = n+ 1 and j ∈ N(n).
(6)

In Step 2 the set S = {X0} is defined.

The update of t0 and S0 in Step 3 combines the branching process with the
bound by the cost and time criteria.

3.2 Branching procedure

If n > 2, the branch of X0 replaces X0 in S with a finite number of sub-problems,
resulting from the following inductive procedure.

The base case of the induction is composed by the following two stages.

1. For each j ∈ {1, 2, . . . , n} we define wj = (j), Bj = [B]1j , Btj = [Bt]1j and
dtj = max{Bt(1, j), T (Btj)}.

2. For each j ∈ {1, 2, . . . , n}:
– using the procedure H for Z = [Bj ]

n we calculate {r̃, w̃};
– if B(1, j) + r̃ = r0, we push the sub-problem Xwj

= {wj , Bj , Btj , n −
1, dtj} into the stack S.

The first stage of the base case implements branching, while the second stage
implements bound by the cost criterion.

Inductive step. Let Xw′ = {w′, B′, Bt′, k, dt′} is a sub-problem that is a
result of the previous branching and w′ = (j1, j2, . . . , jn−k), where js are different
n−k natural numbers, for which js ≤ n. If k > 2, then the branching procedure
replaces Xw′ in S with the finite number of its sub-problems, that are a result
from the following two stages.

1. For each i ∈ {1, 2, . . . , k} we define wi = (j1, j2, . . . , jn−k, B
′(k + 1, i));

B′
i = [B′]1i ; Bt′i = [Bt′]1i and dt′i = max{t(wi), T (Bt′i)}.

2. For each i ∈ {1, 2, . . . , k}:
– using the procedure H for Z = [B′

i]
k we calculate {r̃, w̃};

– if
n−k∑
s=1

B(s, js)+B(n−k+1, B′(k+1, i))+r̃ = r0, we push the sub-problem

Xwi = {wi, B
′
i, Bt′i, k − 1, dt′i} into the stack S.

Again, the first stage of the inductive step implements branching, while the
second stage implements bound by the cost criterion.
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3.3 Update of t0 and S0

The current values of t0 and S0 will be updated only after the extraction of
a sub-problem Xw′ = {w′, B′, Bt′, 2, dt′} from the stack S. In this case w′ =
(j1, j2, . . . , jn−2) is a variation of the first n natural numbers from (n− 2) class,
and there exists exactly two permutations

w1 = (j1, j2, . . . , jn−2, x, y) and w2 = (j1, j2, . . . , jn−2, y, x)

from Pn.
We will suppose that a function edn is defined, such that for an arbitrary

variation w′ of the first n natural numbers from class (n−2), calculates the pair
of permutations end(w′) = {w1, w2}.

If Xw′ = {w′, B′, Bt′, 2, dt′} is at the top of the stack S, then we define
{w1, w2} = end(w′) and pop Xw′ out from S.

For each i ∈ {1, 2}, if FA(wi) = r0 and GT (wi) < t0, then we define t0 =
GT (wi) and S0 = {wi}. Otherwise, if FA(wi) = r0 and GT (wi) = t0, then we
push wi into S0, if |S0| < n0.

3.4 Bound procedure

The current record t0 allows us to implement a bound procedure based on time
criterion.

Let for the sub-problem Xw′ = {w′, B′, Bt′, k, dt′} the inequality is fulfilled

t0 < dt′ (7)

From the definition of dt′ it follows that if w ∈ Pn and w(i) = w′(i),∀i ∈
{1, . . . , n− k}, then it is fulfilled that

GT (w) ≥ dt′ > t0.

Therefore, w is not an optimal assignment. This allows each sub-problem Xw′ ,
for which (7) is fulfilled, to be ignored and to be removed from the stack S.

3.5 Algorithm for solving MCMT problem

The following Algorithm 1 describes in details the proposed solution of the
MCMT problem.

The while loop of Algorithm 1 implements Step 3 of the general structure
of the solution. If S has at least one element, then store the top of the stack S
in {w′, B′, Bt′, k, dt′}, and we remove it from the stack with pop(S). Then the
body of the loop contains three possibilities.

1. If dt′ > t0, then bound is performed, and the algorithm moves to the next
iteration of the loop.
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Algorithm 1 Solution of the MCMT problem.

function MinCostMaxTime(A, T , n0)
{r0, w0} ← H(A)
t0 ← GT (w0), S0 ← ∅ ▷ S0 is a list
w ← ∅, B is a matrix defined with (6)
Bt← T , dt← T (Bt)
X0 ← {w,B,Bt, n, dt}, push(S, X0) ▷ S is a stack
while S ̸= ∅ do
{w,B,Bt, k, dt} ← top(S), pop(S)
if dt ≤ t0 then

if k > 2 then
for j ← 1 to k do

w1 ← w ∪ {B(k + 1, j)}
B1 ← [B]1j
{r, w̃} ← H([B1]

k)
w ← {B1(k, w̃(1)), B1(k, w̃(2)), . . . , B1(k, w̃(k − 1))}
v1 ← w1 ∪ w, r1 ← FA(v1)
if r1 = r0 then

t1 ← GT (v1)
if t1 < t0 then

t0 ← t1
S0 ← ∅
Bt1 ← [Bt]1j
dt1 ← max{t(w1), T (Bt1)}
push(S, {{w1, B1, Bt1, k − 1, dt1}})

end if
end if

end for
else

V ← end(w)
for i← 1 to 2 do

r1 ← FA(V (i)), t1 ← GT (V (i))
if r0 = r1 and t1 < t0 then

t0 ← t1, w0 ← V (i), S0 ← {w0}
else if r0 = r1 and t1 = t0 and |S0| < n0 then

S0 ← S0 ∪ {V (i)}
end if

end for
end if

end if
end while

end function



8 L. Laskov et al.

2. If dt′ ≤ t0 and k > 2 the algorithm performs branching of (w′, B′, Bt′, k, dt′),
and the resulting sub-problems are pushed into the stack S. If the conditions
are met, the current state of t0 and S0 are updated.

3. If dt′ ≤ t0 and k = 2, t0 and S0 are updated.

After the completion of the while loop, the solution of the MCMT problem
is the list S0, with |S0| being the number of optimal assignments, r0 stores the
minimal cost and t0 is the minimal possible time.

The correctness of Algorithm 1 follows from the fact that thewhile loop stops
after a finite number of iterations. This is so, because the number of sub-problems
that can be stored in S is restricted up to a given constant. Besides that, any
update of S0 and t0 decrements the number of elements in S by 1. The correctness
of the branching procedure can be proved by induction using the construction of
the sub-problems. The computational complexity of the algorithm is n1O

(
n4

)
,

where n1 = |W | is the number of optimal solutions with respect to the cost
criterion.

Example 1. Let the matrix A be defined by (12) and the matrix T be defined
with (13) given in the appendix of the paper.

We solve Problem 1 for n0 = 4. We calculate that the minimum cost is
r0 = 218, the minimum time is t0 = 85 and

S0 = {(18, 12, 13, 17, 16, 8, 9, 20, 7, 3, 19, 4, 14, 1, 15, 11, 2, 6, 10, 5),
(18, 12, 13, 17, 16, 8, 9, 20, 7, 5, 19, 4, 14, 1, 15, 11, 2, 6, 10, 3),

(18, 12, 13, 17, 16, 8, 9, 20, 10, 3, 19, 4, 14, 1, 15, 11, 2, 6, 7, 5),

(18, 12, 13, 17, 16, 8, 9, 20, 10, 5, 19, 4, 14, 1, 15, 11, 2, 6, 7, 3)}.

(8)

Now we solve Problem 1 with the same matrices A and T but for n = 1025.
As expected, we get a minimum cost of r0 = 218 and a minimum time of t0 = 85.
However, the list S0 has 256 elements. This shows that the number of all optimal
plans of Problem 1 is equal to 256.

The analysis of the above solution shows that only 226 bounds on time cri-
terion are performed. At the same time, 2707 iterations of the branching loop
are performed. From this observation we can conclude that the time estimates
that are used are not always efficient enough. The reason is that the estimate
dt does not fully account for the influence of the cost matrix A – a fact that is
confirmed by the conducted experiments.

4 List of solutions of the AP

We select an arbitrary square matrix A(aij) of order n with non-negative ele-
ments.

Definition 3. We shall call the plan w̃ an optimal solution of the AP, when

FA(w̃) ≤ FA(w),

for each w ∈ Pn.
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Now we can formulate the AP in the following formal way: for an arbitrary
square cost matrix A, find an optimal solution w̃. Based on this formulation, the
problem for generation of Minimum Cost Optimal Solutions List (MCOSL) is
given in Problem 2.

Problem 2 (MCOSL). For an arbitrary square cost matrix A and an arbitrary
natural number n0, generate a list S0 of optimal solutions of the AP with the
following properties.

1. If the AP has more than n0 − 1 optimal solutions, then S0 contains n0

elements.
2. If the AP has less than n0 solutions, then S0 contains all optimal solutions.

We will solve MCOSL problem following the approach in Sec. 3. In this case,
the general form of the approach is as follows.

1. We calculate the elements of the pair {r0, w0}, where r0 = min
w∈Pn

{FA(w)},
w0 ∈ Pn and FA(w0) = r0.

2. We define a list S0 and a queue S. In the list S0 we collect the calculated
optimal solutions, while in the queue S we place the non-intersecting sub-
tasks, each of them resulting in at least one optimal solution of the initial
AP.

3. The list S0 and the queue S are updated until at least one of the following
two conditions are violated:

S ̸= ∅, (9)

|S0|+ |S| < n0, (10)

where | · | denotes the number of elements in the sequence (list or queue).
4. When the update process stops, there are two possible cases.

– Case 1. S = ∅. In this case S0 contains all optimal solutions.
– Case 2. |S0|+|S| ≥ n0. In this case we insert into S0 the optimal solutions

of the sub-problems that are contained in S. The result is a list S0 of n0

optimal solutions.

The implementation of the above scheme is given in Algorithm 2.
The correctness of Algorithm 2 can be proved in analogy of the proof of

Algorithm 1.

Example 2. We will solve Problem 2 for n0 = 4 and the matrix A, given in (12)
given in the paper appendix.

Our implementation of Algorithm 2 calculates that the minimal cost is r0 =
218 and the list of optimal solutions is:

S0 = {(3, 9, 11, 17, 1, 8, 14, 6, 12, 18, 4, 19, 7, 16, 15, 13, 2, 20, 10, 5),
(3, 12, 11, 17, 1, 8, 9, 20, 7, 5, 4, 19, 14, 16, 15, 13, 2, 6, 10, 18),

(18, 9, 11, 17, 1, 8, 14, 6, 12, 5, 4, 19, 7, 16, 15, 13, 2, 20, 10, 3),

(18, 12, 11, 17, 1, 8, 9, 20, 7, 5, 4, 19, 14, 16, 15, 13, 2, 6, 10, 3)}.

(11)
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Algorithm 2 Solution of the MCOSL problem.

function MinCostList(A, n0)
{r0, w0} ← H(A)
w ← ∅
B is a matrix defined with (6)
X0 ← {w,w0, B, n},
enqueue(S, X0), S0 ← ∅ ▷ S is a queue, S0 is a list
while S ̸= ∅ and |S0|+ |S| < n0 do
{w, v,B, k} ← front(S), dequeue(S)
if k > 2 then

for j ← 1 to k do
w1 ← w ∪ {B(k + 1, j)}
B1 ← [B]1j
{r, w} ← H([B1]

k)
w ← {B1(k,w(1)), . . . , B1(k,w(k − 1))} ▷ original B indexing
v1 ← w1 ∪ w
r1 ← FA(v1)
if r1 = r0 then

enqueue(S, {w1, v1, B1, k − 1})
end if

end for
else

pushBack(S0, {v})
if |S0|+ |S| < n0 then

v1 ← v
v1(n− 1)← v(n)
v1(n)← v(n− 1)
if FA(v1) = r0 then

pushBack(S0, {v1})
end if

end if
end if

end while
if S ̸= ∅ then

for s← 1 to n0 − |S0| do
pushBack(S0, {S(s, 2)})

end for
end if
return S0

end function
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Now we solve Problem 2 with the same input matrix A, but for n0 = 104.
As we can expect, the resulting minimum cost is r0 = 218. However, the list S0

has 1024 elements. This shows that the number of all optimal solutions of the
AP for the matrix A is equal to 1024.

If the matrix A is of 30-th order, and its elements are natural numbers whose
values do not exceed 70, then we can expect that the number of optimal solutions
is comparable to 104.

5 Conclusion

AP is a fundamental problem in the field of operation research. The first known
polynomial-time algorithm that solves it is the Hungarian algorithm [15], [15],
which is considered as one of the methods that initiate the foundations of the
discipline combinatorial optimization [5]. Nowadays, the AP together with its
variants like for example quadratic AP [14], and k-assignment problem [8], is
a subject of contemporary research with huge significance for many different
practical tasks in economics, computer science, machine learning, and many
more. Hungarian algorithm itself is investigated and its improvements are looked
for in contemporary works (see for example [25]).

Despite its popularity, the vast portion of the existing algorithms are focused
on the calculation of a single optimal solution of the AP, and usually the problem
of discovering of more than one optimal solution is not considered. We find that
methods for generation of a list of optimal solutions for the AP are an important
extension of the methods that solve this fundamental task, which is significant
for its practical applications.

In this paper we propose a method for composition of a list of selected assign-
ments, that satisfy an additional condition. An important part in our method
is given to the procedure H that implements the Hungarian algorithm. The ap-
proach is demonstrated with the solutions of the two problems: MCMT and
MCOSL. In the problem MCMT we compose the list of those solutions of AP
that are Pareto optimal. In the MCOSL problem an additional condition is the
predefined number of elements in the list.

The correctness of the computer program implementation of Algorithm 2 is
verified experimentally using matrices of order n < 8 for which Problem 2 is
feasible to be calculated using other methods. Similarly, the implementation of
the solution of Problem 1 is verified using matrices A and T of order n < 8, for
which brute force techniques can be applied. At the same time, the computational
complexity of our implementations is experimentally tested with matrices up to
30-th order (see (12) and (13) in the appendix below).

We have used two different approaches in the implementation of the de-
scribed algorithms: the symbolic computational system Mathematica [29], and
the relatively new programming language for scientific computing Julia [3]. The
Mathematica system provides a large set of tools, that are extremely helpful
in both implementation and validation steps, while the Julia programming lan-
guage combines the abilities of dynamic languages together with efficiency, and
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capability to handle big data inputs. Both implementations are used to verify
our experiments and to prove the efficiency of the proposed algorithms.

A Appendix: Input matrices

25 25 15 18 25 24 26 42 15 29 25 35 23 19 25 25 25 15 18 25
12 11 10 11 20 7 14 16 1 30 25 7 11 21 20 12 11 10 11 20
15 8 13 22 15 20 13 15 35 5 1 26 6 16 15 15 8 13 22 15
26 5 31 9 23 21 16 25 20 18 18 6 46 25 23 26 5 31 9 23
14 35 21 32 27 12 46 27 48 28 5 67 13 23 27 14 35 21 32 27
22 23 19 18 19 23 5 5 9 5 19 32 42 32 19 22 23 19 18 19
21 12 16 17 21 35 7 26 6 67 32 21 11 15 21 21 12 16 17 21
18 21 27 23 18 5 23 65 10 16 67 57 28 32 18 18 21 27 23 18
22 20 23 35 24 8 11 25 35 11 21 17 21 21 24 22 20 23 35 24
21 17 19 30 19 11 25 11 21 17 21 24 22 24 20 21 17 19 30 19
19 26 21 16 21 25 9 12 15 26 14 22 21 18 21 19 26 21 16 21
25 24 31 13 16 26 42 15 29 25 35 23 19 25 25 25 24 31 13 16
25 22 18 26 25 26 6 16 15 15 8 13 22 15 25 25 22 18 26 25
12 32 32 22 23 6 46 25 23 26 5 31 9 23 20 12 32 32 22 23
15 25 25 16 25 67 13 23 27 14 35 21 32 27 15 15 25 25 16 25
15 8 13 22 15 20 13 15 35 5 1 26 6 16 15 15 8 13 22 15
26 5 31 9 23 21 16 25 20 18 18 6 46 25 23 26 5 31 9 23
18 21 27 23 18 5 23 65 10 16 67 57 28 32 18 18 21 27 23 18
22 20 23 35 24 8 11 25 35 11 21 17 21 21 24 22 20 23 35 24
21 17 19 30 19 11 25 11 21 17 21 24 22 24 20 21 17 19 30 19



(12)



57 56 65 63 65 53 58 44 56 71 70 42 58 72 65 57 56 65 63 65
69 69 71 79 57 77 72 55 99 65 52 74 80 69 62 69 69 71 79 62
65 73 77 55 69 66 58 85 60 72 80 65 84 66 66 65 73 77 60 66
55 85 46 75 63 50 84 70 57 63 73 84 36 56 57 55 85 51 72 57
76 42 63 54 44 88 49 50 33 63 85 15 68 57 54 76 47 60 48 54
55 61 67 53 81 72 72 76 82 85 63 49 38 49 71 60 58 61 63 71
63 74 55 83 74 42 74 65 84 15 49 59 70 75 61 60 68 65 73 56
68 50 73 72 59 76 68 25 72 65 13 24 62 50 63 62 60 63 54 66
49 80 72 42 57 83 79 57 46 69 60 73 61 60 56 59 70 54 49 62
79 78 58 51 72 79 57 70 59 64 69 58 59 56 61 69 60 65 56 52
76 51 60 75 69 57 72 68 66 64 68 59 59 63 69 58 58 65 55 79
52 57 60 77 66 55 38 66 61 57 46 57 62 65 52 59 62 40 87 79
56 69 72 56 56 54 75 74 67 66 72 68 68 62 59 61 49 82 69 52
79 58 50 59 57 75 44 57 58 54 76 59 68 61 66 59 68 63 55 58
75 57 56 64 56 23 69 58 53 67 55 56 52 59 56 85 70 52 65 66
67 73 67 59 75 62 68 65 46 85 76 58 80 55 85 80 69 68 69 75
55 75 50 81 59 60 64 56 70 59 66 80 25 75 72 51 76 60 81 59
62 60 63 59 63 75 58 25 67 68 19 14 72 63 59 63 70 63 59 63
59 70 59 46 56 73 79 52 49 75 50 83 74 56 57 69 70 59 46 56
69 65 62 50 62 79 52 73 65 54 79 71 55 57 71 69 65 62 50 62
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