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Abstract. Sorting algorithms are a well-known part of the curriculum
in programming courses in the academia. They are taught not only be-
cause their numerous applications in practice, but also because they are
a good and a comprehensive introduction to the topic of computer al-
gorithms. However, the asymptotic notation used to describe algorithm
complexity is not intuitive for beginners. A visual tool that demonstrates
both the algorithm’s steps and its time complexity makes the abstract
notion asymptotic notation more intuitive, and can improve the learning
curve of the students.
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1 Introduction

Sorting algorithms have been a subject of extensive study, and an indivisible
part of the academia courses of compute programming, and algorithms and data
structures [13], [19]. Actually, the history of studies of sorting algorithms can
be traced back to the beginning of computing around the middle of the 20th
century (see for example works [7], [6], [9], [3], [8]).

Of course, sorting algorithms are an important step in many other methods
and algorithms, and different examples can be given on different level of com-
puting and computer science. A basic example is the binary search algorithm
that requires data to be sorted [15]. Sorting and ordering of data is a part of
complex systems such as relational database management systems [18]. Sorting
also is applied in image processing and computer vision methods, as in the case
of the implementation of the median filtering [11].

Besides their practical importance, sorting algorithms are often part of a
beginner’s course in computer algorithms in the academia, since they give a
good introduction to the complex topic of computer algorithms as a whole. The
objective of sorting is easily defined: implement an algorithm that orders a given
sequence in ascending or descending order using a predefined relation among
its elements; however, different algorithms may have a significant complexity of
their definition and may require different skill level in order to be understood.
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A problem that is easily formulated, and methods of different complexity that
are applicable in its solution, open the possibility for creation of a system of

tasks that can aid the notion formation during the course (for notion formation
through a system of tasks see [2] and [14]).

Sorting algorithms are a good starting point to computer algorithms topic,
but also they allow the introduction of the complicated notion algorithm com-

plexity (see [4]) in a way that is relatively fluent and intelligible for the students
in the first and second year of their studies. The understanding of the asymptotic

notation that is used to denote algorithm complexity, frequently is an obstacle
for students in the introductory course of computer algorithms, mainly because
of their level of knowledge of calculus and analysis, where this notion comes from.
For that reason, usually the notion algorithm complexity is introduced by mea-
suring the execution time of the algorithm implementation running on a concrete
computer system, as for example in [10], which helps the intuitive understanding,
even though it cannot substitute the analytic complexity derivation.

The above motivates us to develop a software that is able to provide learners
with two different visual representations of the sorting algorithms: (i) step-by-
step visualization of the algorithm, and (ii) visual representation of the time
complexity of the algorithm, compared with the same information for other algo-
rithms in the same package. The graphical user interface of the software enables
the experiment with a number of standard sorting algorithms, applied sequences
of different data types which allows students to develop a visual concept of both
algorithms themselves, and their computational complexity. This visual concept
significantly improves the perception of the analytical explanation of the notion
asymptotic notation.

This paper is organized as follows. In Sec. 2 we give a brief survey of the algo-
rithms we have currently incorporated in our project grouped by their average-
case complexity: square complexity algorithms (Sec. 2.1), and n log n complexity
algorithms (Sec. 2.2). In Sec. 3 we present some details of visualization imple-
mentation. Finally, in Sec. 4 we present our conclusions and future work on the
project.

2 Some Frequently Taught Sorting Algorithms

In this section we present some of the frequently taught sorting algorithms in an
introduction course in computer algorithms, which we have implemented in our
visualisation software. We separate the algorithms in two parts: methods that
can be classified as square complexity algorithms, and those that can be classi-
fied as n log n complexity algorithms, according to their average-case execution
complexity.

2.1 Average-case square complexity algorithms

Bubble Sort. Bubble sort is a classical square complexity algorithm, that used to
be one of the first methods taught in academia programming courses ([13], [19]).
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It is relatively straightforward both to understand and implement (see Alg. 1),
and yet many studies prove that is inefficient, even for a “slow” sorting algorithm
(see [1]).

Bubble sort is invented around the middle of the previous century, and dif-
ferent names were used to refer to it (exchange sorting, or sorting by exchange)
[3], [6], [8]. The first occurrence of the term bubble sort can be traced back to
1962 [12], and this is the name with which this algorithm gained popularity.

Algorithm 1 Basic version of the bubble sort, applied on a sequence a.

function BubbleSort(a)
n← Size(a)
for i← 0 to n− 2 do

for j ← 0 to n− j − 2 do

if a[j] > a[j + 1] then

Swap(a[j], a[j + 1])
end if

end for

end for

end function

Fig. 1. Execution of the bubble sort algorithm for its first four iterations.

The algorithm works by repeatedly swapping adjacent positions that are not
ordered (Alg. 1). If the first element is greater than the second, it will swap
these elements, it will then continue with second and third until the end of the
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sequence is reached. On each run, the method pushes the largest element to the
end of the sequence (see Fig. 1). Also, different variations of bubble sort exist,
yet it is easy to be proven that the gained efficiency is not enough to match the
performance of selection sort and insertion sort, described further.

For a sequence of n elements, each pass requires n − i comparisons. Then the
complexity of the algorithm can be expressed by

g(n) =

n
∑

i=1

(n − i) =
n(n − 1)

2
, (1)

where g(n) denotes the number of operations performed by the algorithm. Using
big-O notation, the complexity of the bubble sort in the general case is g(n) ∈

O(n2), which is also its worst case performance in the case in which the input is
sorted in reversed order. Best case may occur, if the sequence is already sorted,
and the algorithm may stop after the first pass without a swap (with a slight
modification of Alg. 1).

Selection Sort. Another simple square complexity algorithm, that has been
known from the same period as the bubble sort, is the selection sort algorithm
[6]. Besides its simplicity, it outmatches the bubble sort efficiency, and in many
academia courses now-a-days it is preferred as the first example for a sorting
method [10].

Algorithm 2 Selection sort, applied on a sequence a. The function MinPos()
finds the index of the minimum element in a, starting from position i.

function SelectionSort(a)
n← Size(a)
for i← 0 to n− 2 do

j ← MinPos(a, i)
if j 6= i then

Swap(a[i], a[j])
end if

end for

end function

On each step of the main loop of the algorithm (see Alg. 2) the method
selects the minimum element from the current unsorted sub-sequence. It swaps
the discovered minimum element with the one on the first position of the sub-
sequence (see Fig. 2). The main loop of the algorithm is repeated until the
unsorted sequence is two elements big (the index i reaches the element n − 1).

On the first iteration, selection sort performs n visits to find the minimum
element, and two visits to swap, totally n + 2 visits. On the second visit it
performs n + 2 + (n − 1) + 2 visits, and since all swaps are (n − 1), the total
number of operations are (see also [10]):
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Fig. 2. The first swap operation performed by the selection sort algorithm

g(n) = n + 2 + (n − 1) + 2 + . . . + 2 + 2. (2)

Since
∑

n

i=1 i = n(n+1)
2 :

g(n) =
n(n + 1)

2
− 1 + (n − 1) · 2 =

1

2
n2 +

5

2
n − 3, (3)

and we get that g(n) ∈ O(n2).

Insertion Sort. The last square complexity algorithm that we will discuss here
is the insertion sort. According to Knuth (see [13]), a version of this algorithm
called binary insertion is mentioned in 1946 by John Mauchly in a legacy pub-
lication dedicated on computer sorting.

Algorithm 3 Insert an element x into sorted sequence a with length n.

function Insert(a, n, x)
i← n− 1
while i ≥ 0 and a[i] > x do

a[i + 1] = a[i]
i← i− 1

end while

end function

The algorithm is based on a routine (see Alg. 3) that inserts an entry into
a sorted sequence in its correct position. Insertion sort algorithm simply calls
the routine Insert() for all elements of the input sequence consecutively for a
subsequence with length 1, 2 until n − 1, where n is the length of a (see Alg. 4).

In the general case we can assume that half of the elements of a are less
than the current element a[i] which implies i/2 comparisons on average. Then
the total number of comparisons performed by the algorithm are (see also [13]):

g(n) =

∑

n

i=1 i

2
=

n(n + 1)

4
. (4)
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Algorithm 4 Insertion sort based on the Insert() routine.

function InsertSort(a)
n← Size(a)
for i← 1 to n− 1 do

Insert(a, i, a[i])
end for

end function

Fig. 3. Four iterations of the insertion sort algorithm.

Again, using asymptotic notation, the complexity is O(n2), however compar-
ing equations (1), (3) and (4), we see that insertion sort performs better than
selection sort, and much better than bubble sort in the general case. Also, dif-
ferent improvements of the algorithm can be applied, which can speed up its
average performance (see [13] and [16]). For example, if binary search is used in
the inserting routine (Alg. 3), the complexity of the search of the insert location
is reduced to O(log n). The latter method, called binary insertion, also does not
solve the problem that the elements of the array must be moved to make space
for the element to be inserted.

2.2 Average-case n log n complexity algorithms

Merge Sort. Merge sort is a classical sorting algorithm that is based on a divide-
and-conquer strategy. Maybe the first description of this algorithm can be found
in the work of Goldstine and von Neumann [7], where merging procedure is
referred to as “meshing”. In this work a full explanation and analysis of bottom-

up version of merge sort that is based on iteration, is given.

Algorithm 5 Recursive top-down version of the merge sort algorithm.

function MergeSort(a, f , t)
if f = t then

return

end if

m← (f + t)/2
MergeSort(a, f , m)
MergeSort(a, m + 1, t)
Merge(a, f , m, t)

end function



A Visual Tool to Study Sorting Algorithms and Their Complexity 7

Here we will focus on the more popular contemporary top-down approach
that uses recursion to be implemented. Often, recursive solutions provide clearer
approach to complex problems (see for example [10]), and merge sort implemen-
tation is not an exception.

6

910 1126 5

125 9 1106

105 12 196

15 91012

Fig. 4. Merge sort divides by half the sequence recursively until a sequence of length
0 is reached.

In the main function of the algorithm (Alg. 5), the input sequence is divided
by half, and each half is sorted recursively. The trivial case of the recursion is
when the divided sequence is of length 0. The sequence that is composed by a
single element can be considered sorted by definition. This is the divide part of
the divide-and-conquer algorithm. An example of this process is given on Fig. 4.

After reaching the bottom of recursion, in the backwards function calls of the
recursion, the algorithm performs its conquer part using the function Merge()
(see Alg. 6) that merges two sorted sub-sequences into a resulting sorted se-
quence. An example of the merging process applied in the backward functions
calls of the recursion is given on Fig. 5.

1 105 9 126

91 10125 6

125 1 9106

56 912 110

Fig. 5. Backward recursive calls of the merge sort algorithm consecutively merge the
sub-sequences using the routine in Alg. 6.

The complexity of the Merge() procedure can be evaluated to three visits
per single iteration, and hence 3n visits totally n iterations. To copy the sorted
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Algorithm 6 Merge two sorted sub-sequences with ranges [f, m] and [m + 1, t]
stored in the same array a.

function Merge(a, f , m, t)
b is a temporary array
i← f , j ← m + 1, k ← 0
while i ≤ m and j ≤ t do

if a[i] < a[j] then

b[k]← a[i], i← i + 1
else

b[k]← a[j], j ← j + 1
end if

k ← k + 1
end while

while i ≤ m do

b[k]← a[i]
i← i + 1, k ← k + 1

end while

while j ≤ t do

b[k]← a[j]
j ← j + 1, k ← k + 1

end while

Copy(a, b)
end function

sequence from the temporary array the algorithm spends 2n visits, and the whole
procedure has complexity 5n visits.

The complexity of the recursive function MergeSort() for n = 2m elements
can be evaluated recursively as well (see also [10]):

g(n) = g
(n

2

)

+ g
(n

2

)

+ 5n = 2g
(n

2

)

+ 5n (5)

and
g

(n

2

)

= 2g
(n

4

)

+ 5
n

2
(6)

then we get:

g(n) = 4g
(n

4

)

+ 10n. (7)

Finally the above expression for n = 2m:

g (n) = 2mg
( n

2m

)

+ 5nm = ng (1) + 5nm = n + 5n log2 n. (8)

Of course, in asymptotic notation the complexity of the merge sort algorithm
is written O(n log n).

Quicksort. Another algorithm that is based on the divide-and-conquer paradigm
just like previously discussed merge sort, is the quicksort algorithm. It is devel-
oped by the British computer scientist Tony Hoare, and published in 1961 [9].
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The algorithm originates from the need of fast sorting algorithm during his work
on machine translation project for the National Physical Laboratory while he
was a visiting student at Moscow State University [17]. Since then the algorithm
undergoes various modifications and improvements to become the most notable
sorting algorithm, applicable on long input sequences.

Algorithm 7 Main function of the quicksort algorithm. The recursive function
gets the input sequence a with the range in the closed interval [l, r].

function Quicksort(a, l, r)
if r ≤ l then

return

end if

m← Partition(a, l, r)
Quicksort(a, l, m)
Quicksort(a, m + 1, r)

end function

The divide part of the algorithm splits the input sequence recursively in
the closed range [l, r] (Alg. 7). If the range contains one or less elements, the
trivial case solution is reached, and the function returns. Otherwise, a function
Partition() (Alg. 8) finds the index to split the sequence in the given range.
Also, the function Partition() ensures that there are no elements leftwards the
pivot p at the returned index that are grater than it, and there are no elements
rightwards p that are less than it. Then the two parts of the sequence (the one
that is less than p, and the one that is greater than p) are partitioned recursively.

Algorithm 8 Basic version of the partitioning routine of the quicksort algorithm
which selects as a pivot the first element in the given range.

function Partition(a, l, r)
p← a[l] ⊲ Pivot value.
i← l − 1, j ← r + 1
while i < j do

do

i← i + 1
while a[i] < p
do

j ← j − 1
while a[j] > p
if i < j then

Swap(a[i], a[j])
end if

end while

return j
end function
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Fig. 6. Partitioning with the last element selected as the pivot.

There are different ways to select the pivot value p in the routine Parti-

tion(). In the basic version, the first or the last element is selected (on Fig. 6 we
show an example with last element as the pivot, while Alg. 8 is an example of
the first element as the pivot). In the worst case this could be the maximum or
the minimum element in the range, which will lead to square complexity if it is
repeated on each recursive call. An improved version of the algorithm uses a ran-
dom pivot which ensures that the partitioning of the sequence in the range will
be roughly equal. In balanced partitioning on each recursive call, the average-

case complexity of the algorithm can be evaluated in analogy to (5) using the
recurrence relation (see [4]):

g(n) = O(n) + 2g(
n

2
), (9)

where single call to the Quicksort() has complexity O(n) plus the complexity
of the two recursive calls. From the Master Theorem ([4], p. 94) we know this
leads to algorithm average-case complexity O(n log n).

3 Visual Application Implementation

The software we present here is implemented using the programming language
C++ and Qt platform (see [5]) which makes it fully portable on each operating
system that is supported by Qt. It is composed by the following main sections:

1. Implementation of the sorting algorithms described in the previous section.
2. Modified versions of the algorithm functions to allow step-by-step algorithm

visualization.
3. Timers and a graphical plot of the execution time of each algorithm (see Fig.

7).
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Fig. 7. Plot of the execution time of the examined algorithms produced by our software.

The application allows user to select whether algorithms to be tested on
randomly generated sequence, or to load a predefined sequence from a file. Also,
the user can select the data type of the input sequences. These two options
allow to test sorting algorithms with a broad variety of input data, and also
to load data sequences that are extracted from other problems. The latter can
demonstrate the efficiency of a given algorithm in the context of a given practical
situation.

(9 1 5 6 2 ) -> ( 1 9 5 6 2 ) compare 9 and 1 and swap since 9 > 1

( 1 9 5 6 2 ) -> ( 1 5 9 6 2 ) compare 9 and 5 and swap since 9 > 5

( 1 5 9 6 2 ) -> ( 1 5 6 9 2 ) compare 9 and 6 and swap since 9 > 6

( 1 5 6 9 2 ) -> ( 1 5 6 2 9 ) compare 9 and 6 and swap since 9 > 2

Fig. 8. A fragment of the visualization of the first pass of the bubble sort algorithm.

In order to visualize each step of the sorting algorithms, we use a function
call at every key point inside the sorting algorithms and display the changes
that have been made so far to the unsorted sequence. The function provides the
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ability to set different pause times at the different key points. This allows an
improved visualization and better understanding of the process of sorting, due
to the difference in the way sorting algorithms work and the need of emphasis
on some key points more than on others.

On Fig. 8 is given the visualization of the first pass of the bubble sort algo-
rithm. The learner is able to run the algorithm and to monitor each stage of its
execution on the selected input sequence.

The plot of the execution time of sorting algorithms give good visual repre-
sentation of their complexity. For example, on the plot (Fig. 7) it is obvious that
the complexity of the bubble sort algorithm can be modelled with a square func-
tion. Also, it is easily seen that among square complexity functions the worst
performance is given by the bubble sort, selection sort performs significantly
better than it, and insertion sort outmatches both of them. The demonstrated
experiment clearly shows why bubble sort algorithm is usually ignored in con-
temporary programming courses.

4 Conclusion

In this paper we present our software tool to visualize sorting algorithms and
their complexity. We provide a survey of some of the most frequently taught
sorting algorithms in university course, tracing their origins, and providing ana-
lytical analyses of their complexity. The complexity of algorithms is an important
notion usually presented in the course of computer programming, algorithms and
data structures. However, it is not intuitively perceived by the students in the
first years of their study because of the complexity of the asymptotic notation.

Our project can improve the intuitive understanding of the complex term
complexity of algorithms by providing visual comparison of the execution time
of different algorithms (see Fig. 7). Learners can perform experiments with dif-
ferent sequences, both random and predefined. Also, more advanced students can
implement another sorting method as part of the same project, and to perform
the same experiments with them.

The project is a part of our effort to organize the curriculum using a practical
approach that is based on a system of task [14] that facilitates the development
of complex notions during the learning process.

As future work we plan to perform both analytical and statistical analysis
of algorithms with the same worst-case complexity that perform differently in
practice. We also plan to compare the performance of such algorithms applied
on different data structures: array based, such as vectors, and node/connection
based, such as linked lists. Our software tool will be extended to visualize the ex-
ecution of other types of algorithms, for example the standard graph algorithms
that are taught in the courses of graph theory. Also, our source code is published
as an open-source project1, and can be extended and modified, according to the
needs of a particular course.

1 https://github.com/RitaPlusPlus/sorting
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